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Exact method for the simulation of Coulombic systems by spherically
truncated, pairwise r~! summation
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Based on a recent result showing that the net Coulomb potential in condensed ionic systems is rather
short ranged, an exact and physically transparent method permitting the evaluation of the Coulomb
potential by direct summation over the ! Coulomb pair potential is presented. The key
observation is that the problems encountered in determining the Coulomb energy by pairwise,
spherically truncated™ ! summation are a direct consequence of the fact that the system summed
over is practically never neutral. A simple method is developed that achieves charge neutralization
wherever the ~! pair potential is truncated. This enables the extraction of the Coulomb energy,
forces, and stresses from a spherically truncated, usually charged environment in a manner that is
independent of the grouping of the pair terms. The close connection of our approach with the Ewald
method is demonstrated and exploited, providing an efficient method for the simulation of even
highly disordered ionic systems by direct, pairwise'! summation with spherical truncation at
rather short range, i.e., a method which fully exploits the short-ranged nature of the interactions in
ionic systems. The method is validated by simulations of crystals, liquids, and interfacial systems,
such as free surfaces and grain boundaries.1999 American Institute of Physics.
[S0021-960609)51517-1

I. INTRODUCTION

a

2 r
erf(ar)= F@J’ exp(—t?)dt, (1.3

The classic Madelung problehi.e., the problem of 0

evaluating the Coulomb potential of condensed systems bP(Nith erf(0)=0 and erf¢s)=1] but not of the complementary
direct, pairwise ~ ! summation, and its consequences for the

. g S . . __error-function term,

physics of ionic crystals and liquids, have received consider-

able attention throughout this century. The well-known  erfq(ar)=1—erf(ar). 1.4
Ewald method has long been the method of choice for ]

evaluating energies, forces, and stresses in the simulation g€ vectorn=(n, ny,n;) in Eq. (1.2) denotes the three-
ionic liquids and solids. The method is based on a mathdimensionally(3D) periodic images of the simulation cell of

ematical manipulation of the total Coulomb energy of a sefinéar sizeL; the prime indicates that, obviouslgO0 for i

of N ions, with chargesy; at positionsr; that are part of an =j. The conditionally convergent total energy of the aperi-
infinite system of point charges odic system in Eq(1.1) has thus been converted, by a few
mathematical tricks, into the sum of rapidly converging real-
N o . o
1 a space and reciprocal-space contributions,
gor=s> 3 @y
2{=1 =1 1) Elot— Eloty g1t 15

to achieve rapid convergence for what is mathematically af the artificially periodic system. Her& represents the
conditionally convergent expression; herg=r;—r; and reciprocal-lattice vectors associated with the 3D periodic
rij=|ri;|. The “trick” to the method consists ofi) artifi-  simulation cell.

cially imposing structural periodicity on the generally aperi- As a physicist one cannot help but think that the above
odic system,(ii) multiplying the resulting expression by mathematical procedure, converting a problem with no trans-
unity, thus rewriting Eq(1.1) as parentphysicalsolution into a straightforwarchathematical
exercise, is a scientific form of “black magic.” At the very
least, one would like tdi) understand the physical implica-
tions of these manipulations and, even more importént,
expose the overall range of thatal potential experienced by
+erf(elrij+nL|)], (1.2 the ions, given that the ! pair potential is, indeed, very

, , long ranged. Addressing these issues is the main purpose of
and (iii) taking the Fourier transform of only the error- s article.

function expression,

N N ]
qid;
Zl 121 > —J[erfo(a|r”— +nL|)

Etot: ’
Ao |rij+nL]

N| =

From a conceptual viewpoint, the aperiodic nature of the
original system should, in principle, be restored as the limit
dElectronic mail: wolf@anl.gov in which the reciprocal lattice vectork, tend toward zero.

0021-9606/99/110(17)/8254/29/$15.00 8254 © 1999 American Institute of Physics

Downloaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



J. Chem. Phys., Vol. 110, No. 17, 1 May 1999 Wolf et al. 8255

In practice, however, the reciprocal-space term, which acticularly surfaces on charged crystal-lattice planes, an asser-
counts for long-range effects in the Coulomb potential, istion tested by simulations of rocksalt structured surficEs
usually retained. This has given rise to the popular notion ofind later verified experimentally.
the long-ranged nature of the Coulomb potential in con- In this article we will revisit the classic Coulomb prob-
densed ionic systems, and to the attribution of some “typi-lem, starting from an analysis of the physical reasons for the
cally ionic” phenomena, such as the long-range charge orproblems encountered when attempting to evaluate the Cou-
dering in ionic liquids® to the long-range nature of the lomb potential of condensed systems by simple, pairwise
Coulomb pair potential. summation(Sec. I). The key recognition from this analysis

There is much evidence, however, both theoretieald s that the lack of electroneutrality prevents the pairwise,
from computer simulation? that the effective Coulomb in- direct 1+ sum in Eq.(1.1) over spherical crystal-lattice shells
teractions in condensed systems are actually rather shoffom converging. In Sec. Il a simple method is developed to
ranged. For example, the direct-summation method devisegchieve charge neutralization wherever thé pair potential
by Evjen? in which fractional charges are assigned to theis spherically truncated, enabling the extraction of the Cou-
ions according to their site symmetry, strongly suggests atomb energy, forces, and stresses from a usually charged
effectively short-ranged nature of the Coulomb potential inenvironment. The correspondence between the charge-
the perfect crystal. Computer simulations of ionic melts haveneutralized and the shifted Coulomb pair potential is estab-
also contributed significantly to the growing body of evi- lished, leading to a general method for smoothly shifting any
dence that at long range there is almost complete cancellanteratomic potential and its derivatives in a manner that
tion of Coulombic effectS® In fact, it has been yields values for the energy, forces, etc. as close as desired to
demonstratetthat in practice the reciprocal-space part of thethe correct(unshifted ones. While a number of empirical
Ewald sum can be neglected entirely without affecting theapproaches involving charge neutralization have been tried
underlying physics, leading Clarke al® to develop “short-  in the pasf:**'5here we develop a firm theoretical basis for
range effective” potentials for the simulation of ionic lig- the concept.
uids. Clearly, if the potential in Eq1.9) is therefore rather The concept of local charge neutrality leads naturally to
short ranged and essentially given by only the real-space pagt distinction between the true Madelung poteftiahd, as a
[see also Eq(1.2)], the original potential in Eq(1.1) must  part of it, the “charge-neutralizing” potential associated
also be rather short ranged and, paradoxically, essentiallyith the spherically truncated environment of each (Sec.
identical to the real-space part of the Ewald sum. However, it|l ). By definition, the Madelung potential is unique in that it
is far from obvious how this can be. To elucidate this apparis entirely independent of the embedding of each ion in its
ent paradox is one of the purposes of this article. local environment; it can be compared directly to that ob-

A key driving force for finding alternatives to the Ewald tained from the Ewald sum. Plotted against the truncation
method is its high computational load, which in a simpleradius, this potential is found to oscillate systematically, in a
implementation increases ag\). Moreover, even with an damped manner, about its fully converged va(Gec. V),
optimal balance of the real-space and reciprocal-space coBuggesting that the “baret ~! Coulombpair potential can
tributions Fincharh has shown that the computational load be replaced by a damped pair potential without significantly
increases at best agI"'%). Therefore, in recent years sum- affecting the converged value of the Madelung potential. By
mation algorithms known as fast-multiple methods that argustifying and carefully investigating the effects of damping,
computationally superior to the Ewald method have becoméhe close connection of our approach with the Ewald method
available for the simulation of Coulombic systefid’Based is demonstratedSecs. V and V) This leads to a simple
on the summation of the multipole expansion of Ef,l),  physical interpretation of the Ewald sum. Finally, to validate
these ordeN methods are particularly suited for the simula- our method directly, in Sec. VIl we compare molecular-
tion of very large systems. In addition to their computationaldynamics simulations using direct, pairwise damped
efficiency, these methods have the conceptual advantaggimmation with spherical truncation with the results ob-
over the Ewald sum of being more directly connected withtained via the full Ewald sum.
the physics of ionic systems. Unfortunately, however, like
the Ewald method they provide little physical insight into the
effective range of the Coulomb potential and are therefore of
little help in elucidating the physics of ionic systems from a
more intuitive point of view. Il. BACKGROUND

That the effective Coulombic potential of the ions in : . -1 _

. A. Charge neutrality and direct r~* summation

condensed systems is actually rather short ranged was dem-
onstrated more recently by Wdft:'?By presenting a method The well-known problems encountered when attempting
for the evaluation of the Madelung constant for perfect crysto determine the Coulomb energy by direct, pairwise
tals that involves direct ~* lattice summation over neutral summation ovecrystal-latticeshells out to some distanéx
dipolar “molecules,” Wolf showed that the “true” Made- are illustrated in Fig. 1 for the simple case of a rocksalt-
lung potential of an ion due to its pairwige ! interaction  structured perfect crystal at zero temperatdr&hown in
with all the other ions falls off as~ .1 Based on this insight Fig. 1(a) is the energyE\°(R.), of removing some arbitrary
and as a test of his method, he suggested that most ioni@n, i, from the perfect crystaE!°(R,) is related to the total
crystal surfaces should be systematically reconstructed, paenergy of the system as folloWsee Eq.(1.1)]:
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o o o0 00 the Na'Cl~ basis dipoles to the sites of the fBcavais lattice(schematic;
% ° fse) open and closed circles denote Nand CI” ions, respectively As illus-
S -20- o o © o° trated in (b), this results in the generation of two identical, oppositely
o o charged fcc sublattices that are displaced relative to each other by the basis
o vectorb. (c) Spherical truncation ofrystal-latticeshells usually results in a
30 charged local environment of the ion at the center.
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c Figure Xb), showing the energies of Fig.(d plotted
12 against the net chargd,g(R.), in the spherical volume be-
tweenr=0 andr=R;, gives some indication as to the ori-
NaCl lattice o © gin of this behaviott? Clearly, the deviations from the cor-
= 8 o rect Madelung energy(dashed ling are approximately
N:_ 4 o ° g proportional toAq(R,), suggestir_lg that a reas_onably good
= % value of E,,4 could be obtained if one could find a way to
S ] © o609 render the volume summed over neutral. Indeed, when the
— 07 °o o system is neutral or almost neutral, values close to the cor-
2 & rect Madelung energy are obtaingskee the arrows in Fig.
5 4 8 8 1(a) corresponding to cutoff radiR./a, of 0.866, 2.739, and
& o 3.464 and values oAq(R.)/|q| of —2, —2, and 0, respec-
-8° 8 o tively]. These observations suggest that the large fluctuations
° g in Fig. 1(a) arise from the fact that the NaCl lattice is prac-
-12 v T T O T v T v 1 1
30 -20  -10 0 0 20 30 zﬁillllyé never neutral when terminated by complete crystal

(b) Aq=[N(+)-N(-)]q

FIG. 1. Total Coulomb energy per idim units of the inverse lattice param-

eter, g?/a) obtained by simply summing the Coulomb pair potential, _
+g%r 1, over shells of the rocksalt latticéa) Energy per ion against cutoff B. Short-ranged nature of the Madelung potential in a

radius,R. , assumed to coincide with crystal-lattice shells; the arrows indi- P€rfect ionic crystal

cate cutoff radii where the crystal lattice is exactly or nearly neutsal B d the id f ch tralizati . |
energy per ion against the differendd(+)—N(—), between the total ased on tne iaea oOr chargeé neutralization, a simpie

number of cations and anions contained in a crystal-lattice sphere of radivd1ethod for determining the Madelung constant of a perfect

r. The fully converged valueR.—=) of the Madelung energy for this crystal lattice was presented recently by Wdlfas illus-

structure is indicated by the dashed line. trated in Fig. 2a), this approach involvesta * sum over the
neutral shells of th@8ravaislattice, with the proviso that no
basis molecule may be broken up and thus guarantee charge

EC(R,) = ﬂ 2 4iq; _ EEtot(R ). (2.) neutrality wherever the ~! pair potential is truncated; by
¢ 2( iziR) Fij 270 contrast, the sum sketched in FidcRinvolves the charged
Fij<Re

shells of thecrystal lattice. For example, the rocksalt struc-
According to Fig. 1a), the energy per ion thus defined ture copsistslof a face—centgred—cul()icc) Brayais lattice
fluctuates dramatically between large positive and negativéPPen circles in Fig. Pand a dipolar N'Jacr basis molecule;
values, with no indication of convergence towards the corfhe latter is characterized by the basis vettoAs illustrated
rect Madelung energeMa= — 3.495 12@?/a, for rocksalf I Flgs. 1a) and_Z{b), this results in the generation of two
(dashed ling (We note that this value, given in units of the identical, opposnely charged fcc sublattices that are dis-
lattice parameter, is twice that given in units of the nearestPlaced relative to each other by the vedwoiThe total “mo-
neighbor distancea/2, for the NaCl latticé) With a value ~ lecular” Coulomb energy of some ianat the origin is then
largely determined by the terminating crystal shellRat,  9'vén by
from Fig. 1(a) it appears impossible to determine even the 9 2 1 1
sign of the Madelung energy, irrespective of the volume of E{“°'= - F+q2_ _ E (—— —)
the system contained by the surfaceRat. This behavior
illustrates the conditional convergence of the sum in Eq.

(1.2), i.e., that the value of the Coulomb energy depends on =E™a+ > E™(ry), (2.2
the manner in which the sum in E€L.1) is terminated and fs
on the order in which the terms are grouped. where the first term represents the “intramoleculari’ (
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—i") interaction while the second is the “intermolecular” 3.40
mtiractlon of_lonl with the molecules in shells with radii 5 45_' NaCl lattice
rij=rs[see Fig. 2a)]. 47

Intuitively one would expect the double sum in Eg.2) -y !

(involving first all the Bravais sites and then the NGi~ 1/

basis molecules attached to each)diteconverge rapidly for N‘\B 355 {,’ " N
the following three reasor{see Fig. 2a)]. First, the interac- Z wo!

tion energy of ioni with a complete moleculeqzlr”— )

—qzlrij,, is small compared to its interaction energy with =

-3.60 dipolar (fec Bravais)

1}
1}
]
13
[}
[
13
¥
]
]
1}
]
13
[}
’

each individual ion in the molecule. Second, because the -3.65 +
direction ofb is fixed while that ofr;; is averaged over a . I octopolar (s Bravais)
discrete set of Bravais points on a sphésee Fig. 2a)], -8.70 1
within a given Bravais-lattice shell of fixed radiug the 375 i./
values of I¥/;; — 1/r;;, vary between small positive and nega- "T10 15 20 25 30 35 40
tive because the anglg;, betweenr;; andb is symmetri- r_[a]

s

cally distributed; the sum ovgiin Eq. (2.2), involving all the
molecules in a given Bravais shell, therefore involves dlffer'FIG. 3. Madelung energy for the NaCl lattice against cutoff radius obtained

ences between already relatively small terms. Third, the veryy direct lattice summation involving either a fcc Bravais lattice with a
small positive and negative shell-by-shell valuBg,.(rs), dipolar basigopen symbolsor a sc Bravais lattice with an octopolar basis
thus obtained are further averaged while being summed ovéglosed symbols The horizontal line indicates the correct Madelung energy.
all Bravais shells; as, increases, these rapidly decreasing

small negative and positive values thus effectively average to
zero. whereN(r) is the number of sitef.e., Na"Cl~ molecule$

While this dipolar approach guarantees that the crystajn a given Bravais shell, andcy(rg)=(cod Nre
lattice is neutral irrespective of where the pairwise sum iS:[llN(rs)]Ej’(rs) cos' 9, represents an average performed
truncated, it suffers from the problem that a sum over shell§,or each Bravais shellsee also Fig. @)]. Because of the
of dipoles cannot be terminated without rendering the systen}, arsion symmetry of Bravais lattices, all odd powers of
as a whole polarizefisee Fig. 2b)]. To obtain the correct . (ro) vanish identically

. . . n\'s. "
Madelung energy, the polarization energy per unit volume, ™ \ye note that the coefficients in the expansion in powers
EP°, therefore has to be subtracted from the expression ¥ (b/r)™* ! (n=4,6,8...,) given in Ref. 11 are actually the

i S. 130y .

Eq.(2.2), ie., Legendre polynomialsP,(x), of x=c,(rs).}” Moreover,
EMad_ gmol_ Epol (2.3 from the addition theorem the Legendre polynomials may be
' ' written in terms of spherical harmoni&Slt is precisely such

According to de Leeuvet al,'® Epol is given by the dipole an expansion of the electrostatic potential in terms of spheri-
moment,gb, that each molecule contributes to the polariza-cal harmonics that forms the basis for the fast-multipole
tion of the systemfEP%'=(27/3Q0)(qb)%, whereQ is the  method$ 1°

“molecular” volume. For example, in the fcc lattice) We also mention that for the case of the rocksalt struc-
=a%4; with |b|=a/2 for the Na Cl~ basis molecule, this ture the direct ~* sum involving octopolar building blocks
expression give&P?'=(2/3)q% a=2.094 394. reproduces Evjen’s sufhidentically while avoiding the am-

By choosing a basis molecule without a dipole momentbiguities associated with the assignment of fractional charges
the polarization correction in Eq2.3) can be avoided alto- to the ions in the unit cefl Also, based on the above insights
gether. Thus, instead of viewing the NaCl lattice as a fcat was predictet!*® that all rocksalt structured surfaces
Bravais lattice with adipolar basis, one can choose the should be fundamentally reconstructed such that the octopo-
simple cubic(sc) Bravais lattice with a cube-shapedtopo- lar building blocks are not broken up. One such reconstruc-
lar (NaCl), basis'* Avoiding thus the generation of a mac- tion has indeed been recently obser¥®and this strongly
roscopic polarization, the direct * sum based on Eq2.2)  supports the validity of the physical picture underlying the
gives the correct Madelung energy directly, without any cor-above convergence analysis.
rection. The results of the evaluation of E¢®.2) and (2.3 The effective range oEimO' in Eq. (2.4 may be esti-
for a “molecular” rocksalt lattice viewed in either of these mated by determining how the erra&kEM34(R.), due to the
two ways(fcc versus sc Bravais lattice, dipolar versus octo-truncation varies as a function &;. This error is given by
polar basig are summarized in Fig. 3. the interaction of iori with all the ions beyond some cutoff

A formal investigation of the convergence behavior of radius,R,:

EM in Egs. (2.2 and (2.3 with Figs. Za) and 2b) was .
presented in Ref. 11, showing tra.'f“" can be written as an AEMa“(RC)= 2 N(rs)veﬁ(rs)NPJ’ drs477r§Veff(fs).
expansion in powers ob(ry)""! (n=4,6,8...,). The leading rs>Re Re 25

term has the fort
where the sum was converted into an integral and the

2 5
Eim°'~ Z @ 2 N(rs)(g) [1-5C4(ro)], (2.4 number densityY (s represents the effective pair potential
8 b %3 s defined by comparison with E.4). The shell-by-shell val-
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ues ofc,(rg) scatter practically randomly about 02j.e., Third, the slow rate of decay of the * Coulomb pair

1-5c,(r,) fluctuates about zero, giving rise to the practi- potential has to be distinguished from the fast rate of conver-

cally random fluctuations about zero in the dipolar values foigence of the Madelung energy as a function of the cutoff

Eimol in Fig. 3. To obtain an upper bound for the envelope ofradius,R..

these fluctuations, 25c,(rs) can be set equal to some con- Fourth, largely due to the reciprocal-space term, the

stant; withveﬁ(rs)~r;5, the integral then yields a quadratic range of the net Coulomb potential obtained from the Ewald

decrease,AEMad(RC)~Rc‘2. For comparison, withV(r) sum is not clear. Although in the Ewald method little atten-

~r~8, the Lennard-Jones potential giva&(R,)~R; >. tion is paid to the manner in which the ions are surrounded,
its numerical robustness suggests that the underlying poten-

) ) tial is also rather short ranged.
C. Convergence behavior for disordered systems How these four observations are connected is not obvi-

That the above convergence arguments are not limited teus, as evidenced by a considerable body of literature that
perfect crystal lattices nor even solids is readily seen. Moshas dealt with the Coulomb problem in condensed systems
computer simulations of solids and liquids make use of artithroughout this century. It is the main purpose of this article
ficially imposed 3D periodic cell borders, particularly when to elucidate these connections.
evaluating the Coulomb energy and forges via the Ewaldy Madelung potential of a perfect crystal from
method. A simple way of mapping a liquid onto the abovegpherical truncation
molecular way of thinking, for example, is to considbe
entire simulation celbs the neutral “molecule” attached to

the sc lattice of the periodic simulation-cell images. At any 3 )
ference between the energy of ibat the center of Fig. @),

instant the simulation cell will exhibit some small net dipole ’
moment, enabling a power expansion mathematically identi" the one hand, and at the center of Fig) 2on the other,

cal to that in Eq(2.4). Even in a liquid the ~° convergence W€ observe that the charged system in Fi@) 2epresents
therefore results. merely a spherically truncated subset contained in the neutral
Apart from this convergence argument, in practice theSystem in Fig. 2a) which has been truncated in a nonspheri-

l . . -
simulation of a highly disordered ionic system in the spirit of & mannerl.. Since in both systems the energy of ioat the
the above molecular. direat-X sum is not trivial and is CENter consists of inite number of pairwise ™ terms|[see,

computationally rather inefficient. It necessitates some artifi€-9- Ed.(2.1], their energy difference can be determined

cial and computationally cumbersome grouping of the iond"0M & one-by-one comparison of corresponding pair terms.
into molecules, combined with a method for truncating the!NSPection of Figs. @) and Zc) reveals that the key differ-
r—1 pair potential. In one implementation of this approach€NCé between the two systems is due to the net charge,
Aqg;i(R.), in the system in Fig. @) that arises from those
Na'Cl~ dipoles in Fig. 2a) that were broken up upon
spherical truncation &, . The entire net charge in Fig(Q

We start by considering the twimite perfect-crystal sys-
tems sketched in Figs(& and Zc). To understand the dif-

for the molecular-dynamics simulation of ionic meftgrun-
cation of the pair potential was avoided altogether by sum

ming to full convergence. These simulations exhibited en- ) |
ergy conservation and gave thermal properties in fulis therefore localized near the system surface, in a shell of

agreement with similar simulations using the Ewald Sdm. width |b|, while the interiors of both systems are identical
Nevertheless, a more practical approach is clearly neede@"d neutral. . .

Such an approach should combine the conceptual advances BY @nalogy with the convergent behavior of the charge-
associated with recognizing the short-ranged nature of thBeutralized system in Fig.(@, one might expect that the
effective Coulomb potential of the ions with a computation-SYStém in Fig. &) might become convergent as well if only

ally efficient and physically transparent method for truncat-the charge-neutralizing potential associated with the net sys-
ing ther ~* pair potential. tem charge is subtracted from the total endrgge also Sec.

IIA and Fig. 1(b)], i.e.,

Il. PAIRWISE, SPHERICALLY TRUNCATED r~! SUM
- o E'*4Re) ~E"(Ro) — E[*"(Ro), (3.0

The present situation, described in Secs. | and Il, can be
summarized by the following four observations. First, Fig.
1(a) demonstrates the well-known fact that the total Cou-with EI°(R.) defined in Eq.(2.1).
lomb energy of a given system obtained by evaluating Eq.  Based on the insight that the net charge in the system in
(1.1) depends entirely on the manner in which the ions ard-ig. 2(c) is localized near the system surface, a simple model
surrounded for the purpose of evaluating the pairwisé  can be developed to estimate its effect onii@t the center.
double sum. Given that |b| represents the nearest-neighbor distance,

Second, the “molecular” approach reviewed in Secs.|b|/R; is always less than unity and, for longer cutoff radii,
I1B and Il C reveals that the true Madelung potential of the|b|/R.<1. Instead of considering the actual charge distribu-
ions is rather short ranged even in a highly disordered solidion within the thin surface shell of thicknedis|, we there-
or in liquids. However, in order to recognize this property, fore assume that the entire net charge is locatexttly atthe
the pairwise ~! double sum in Eq(1.1) has to be performed system surface @.. The charge-neutralizing potential for
in such a manner as to ensure a neutral local environment fagon i in Fig. 2(c) is then simply given by its Coulomb inter-
each ion. action with the surface chargag;(R,), i.e.,
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FIG. 4. R, dependence of the approximate Madelung energy determined

from Eg. (3.3 for the spherically truncated, charge-neutralized system infF|G. 5. Comparison of the approximate Madelung energies agRjneb-

Fig. 2c) (closed symbols For comparison, the total energy of the charged tained from Eq(3.3) (closed symbols; see also Fig. with the exact ones
system{first term in Eq.(3.3] is also showriopen squares; same data as in from Fig. 3 (open squargs

Fig. 1(@].
shell-by-shellcharge densitiegopen symbols, right-hand
EeU R )~ qiAdi(Re) (3.7  axi9 exhibit basically the same short-period fluctuations as
' ¢ Re the total energy of the charged system in Figs) and 4. As

also shown in Fig. &left-hand axi$, thetotal charge density

of the system, defined by dividing the total charge of the
entire system by its total volume,rARE/B, exhibits the same
noisy behavior. We therefore conclude that the charge stored
in each crystal shell, or in the system as a whole oWR {0

where Ag;(R.)=q(N*—N7) is the net charge within the
cutoff sphere of ioni. We note that in the particular case
considered in Figs.(@ and Zc), N* >N~ and hence*"
>0. Combining Eqgs(3.2), (3.1), and(2.1), we obtain

EMad(R )~ 2 aid;  9iAdi(Re) _ (3.3 is not responsible for the damped oscillations in the charge-
: ¢ iFi T R neutralized, spherically truncated potential in Fig. 5. The ori-
(rij=<Ro) gin of these oscillations will be elucidated in Sec. IV.

The dramatic effect of this charge neutralization on the

is compared with that of the charged system in Fi¢n).1

In summary, based on the insight that any net charge
energy of the spherically truncated system is demonstrated iontained in a spherically truncated perfect cryff. 2(c)]
Fig. 4 in which the energy of the charge-neutralized systemé#s localized near the system surface while the interior is neu-

tral, we were able to demonstrate that the Madelung energy

Remarkably, even for rather short cutoff radii, Madelung en-0f an ion in a spherically truncated environméhtg. 2(c)]

ergies close to the correct value for rocksalt are obtained
(solid symbols.

Equation(3.3) is a remarkable result, demonstrating that
the Madelung energy of an ion in a charged environment
[see Fig. Zc)] can be estimated by simply subtracting the
charge-neutralization term from the energy of the charged
system. However, as seen from the detailed comparison in
Fig. 5, the approximate Madelung energy obtained from Eq.
(3.3) (solid symbols; see also Fig) dscillates significantly,
in a slightly damped manner, about the correct Madelung
energy of the dipolar molecular systefapen symbols in
Figs. 5 and 3 in fact, on the greatly expanded scale in Fig.
5, the small oscillations in the potential of the dipolar system
are barely discernibléct. Fig. 3.

In an attempt to analyze the origin of the pronounced
oscillations in the charge-neutralized, spherically truncated

10 e ey 40
S L shell-by-shell 3§ 44 %
k= / o

5 - 20 o
=) 9! 9 K 7 Q o B
g L5, n D nisegil 410 @

_I’_' t R Ry b v K ,." 19,1 o do
S o b VA AR 0 o
ERIRY, Yoy 1,"!' U et ': -‘vnv“
R R R R R R V=T
£ ] b4 & ) <

-5 ° -20 _,
© P total )
8 C . 305
'2 E NaCl lattice 3 o

-10 N sl e b b e ben e n b -40

0.5 1 1.5 2 25 38 3.5 4
R, [a]

potential in Fig. 5, we have determined the charge density irﬁ'?r; 6. :T‘:)ge_tdenslity in Tg?ACJVSt?]' Shi“c'j ‘_’efti:e‘i'j _bSI’ di"iditngﬂt]he Ch";‘fge

' e shell by its volume, #4R?Ad, whereAd is the distance to the nex
each Cr_yStaI shell, defme_d by dIVIdlng t2he charge and ?nergyhell(open symbols; right-hand a)isAlso shown is the integrated charge
stored in each shell by its volumemREAd, whereAd is  gensity(closed symbols; left-hand aigefined by dividing the total charge
the distance to the next shell. As seen from Fig. 6, these the entire system by its total volumes7R3/3.
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can be estimated by simply subtracting a surface-charge term 1 N
from the total energy of the charged system. EMadR,)~ 52 EMYR,)
We also mention that Adarifshas pointed out that, op- =1
erationally, an electroneutrality correction identical to Eq. 1 94 gAGi(RY)
(3.2 involving a charge distribution opposite to the total net ~ EiEJ. 2 - = (3.9
= ] ij C

charge in the truncation sphere of each ion removes the ma-
jor deficiency of the direct summation over the Coulomb pair

potential. In the absence of either a formal justification or 3This general expression suggests that the total Madelung en-

convergence argument, Adams’ operational suggestion haeﬁ'gy, EMad(R,), of an arbitrarily disordered, spherically trun-

gone mostly _unnotlced. .Unfortunately, however, h's SImUIa'cated, charged system can be estimated simply by subtract-
tions at the time of relatively small systems led him to con-

: . ing the charge-neutralization term associated with the local
clude that the results thus obtained are strongly System-size. ironment of each ion from the total energy of the charged
dependent, which we were not able to confirm. Nevertheles%ystem

mb? 212 ion Mpnte-(IZarIo S'rgmat'ohn of 3'rrluzjllten'§al't hefwas As an illustration of Eq(3.6), in the following we con-
able to approximately reproduce the radial distribution UNC-sider crystalline and molten MgO as described by the

tion obtained from the Ewald methc#l. . Buckingham-type interionic potentials of Sangster and

| :Ne fmtz_;\IIy p?'{;]t out t?at, as E.n extrha benl_eﬂF, ﬂ:e dstphhe”’Stonehan”r.l A melt was prepared by means of standard
cal truncation of the system in Fig(@} has eliminated the constant-pressure molecular-dynamics simulations of a

net dipole moment in the systefsee Fig. #)] and, hence, point-ion model in which the Coulomb energy, forces, and

the related dipolar correction given by E@_.3), 1.8, 85 a  gresses were evaluated using the full 3D Ewald method.
natural consequence of spherical truncauon, the local enV'During gradual heating of the crystal at constér@ro pres-
ronment of each ion is neutfdland dipole free. sure from zero temperature through the melting point, snap-
shots of the structures of the high-temperature crystal and the
liquid were stored for the following analysis using E8.6).
B. Madelung potential for disordered systems from The dramatic effects of charge neutralization are demon-
spherical truncation strated in Fig. 7a) for the high-temperature perfect crystal
The above results, derived for a highly idealized perfect-and in Fig. -(t.)) for_ the melt. Shown in each is both the total
energy per ion in the charged system and the charge-

crystal situation, are readily generalized to include disor- . .
dered systems, such as liquids or solids with defects. Obpeutrahzed(Madelung energy obtained from E43.6. Re-

main conclusion will be that the approximation in E§.2) markably, for both systems Mao!elung gnergies glose to the
that any net charge in a spherically truncated system is |Of_ully converged Ewald valueghorizontal lines in Flgs:_(h)
cated exactly atthe surface rather than distributed over aand b)] are obtained even for rather short cutoff radii. Also,

discrete surface shell of widtfb| is actually much better damping in the oscillations about the correct Madelung en-

satisfied in highly disordered systems. ergy is clearly discernible in both cases.

- As already mentioned, the assumption underlying Eq.
In a disordered system the energy and forces vary fro ) o
ion to ion, as does the net chargeg; (R.), within the cutoff r?3.5) is that the net charge within the cutoff sphere of each

sphere of each ion. The double sum in the perfect-crysta{.Pn is locatedexactly atthe sphere surface rather than dis-

expression(2.1) therefore has to be restorésee also Eq. crgtely dlst_rlbuted over a ywdth of the .order. of t_he nearest-
A.D]: neighbor distance. The direct comparison in Fig. 8 of the

approximate Madelung energies thus obtained for the zero-
1 LN and high-temperature crystals and for the melt reveals that
ERY(R,) = —E E 99 _ _z EC(R,). (3.4 the magnitude of the damping in the oscillations about the
2i=1 jik Fij 2is correct Madelung energy increases with the increasing de-
iy <Re) gree of structural disorder, indicating that this assumption is
better satisfied the more disordered the system is. This be-
havior originates from the thermal movements of the ions
" " . iy which have the effect of smearing out the discrete distribu-
neutral, “molecular” system with the > convergence be- . . :
C . o ) tion of the surface ions. The net effect is a smaller net charge
havior discussed in Sec. I B, and in FigcRas a spherically - . ; o
) X L within the truncation volume that has to be neutralized; also,
truncated system. Since in their interiors the two systems are, . . : S
. . . ; while in the high-temperature crystal some of the directional
identical and neutral, any net charge in the spherically trun- . ; : O T ) :
and radial discreteness in this distribution remains, in the

cated liquid arises from molecules near the surface that were . ..
melt it is almost completely washed out.

broken up upon spherical truncation of the neutral, molecular . o . .

system, and Eq€3.2) and (3.3 are replaced by In Fig. 9 the charge—m_autrall'zmg energies .from Flg@ 7
and 7b) are compared directly; these energies are directly
N N related to the surface charges in the spherically truncated
EMCUR )~ E 2 EMeU(R )~ 12 9iAGi(Re) (3.5 system. Compared to the zero-temperature perfect-crystal
ot A2 25 R data in Fig. 4, due to the ion mobility at higher temperatures
the charge-neutralization energies for the high-temperature
and solid and the melt exhibit a rather smooth oscillatory depen-

(rij<Re¢)

Instead of the perfect crystal sketched in Fig®) 2nd Zc)
one might think of a liquid, considered in Fig(& as a
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FIG. 7. Comparison between the charged and charge-neutralized energiesitgO and the symmetric tilt GERSTGB) on the MgO(210
(a) the high-temperature perfect crystal diwithe melt as a function dR .
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FIG. 8. Comparison of the charge-neutralized energies of the high-
temperature perfect crystal and the njstie Figs. #®) and 7b)] with that of
the zero-temperature perfect crystal in Fig. 5.

physically and computationally more complex because the
structural disorder is so highly localized at the interfaces.
The key task is to determine the Gibbsian excess energy per
unit area from the simulation of two related systems, one a
perfect-crystal reference system and the other a bicrystal
containing the interface, but otherwise identical to the refer-
ence crystali.e., they contain the same number of ions, at
the same temperature and presgufbe computational chal-
lenge is therefore to extract a relatively smattensive ex-
cess energy per unit area from the subtraction of two large
(extensive system energies.

For simplicity we limit ourselves to zero temperature.
The two systems we choose are t#i®0) free surface of
earlier

the subject of

plane; both systems were

Both systems were prepared by constant-pressure molecular-dynamics Si"WTvestigation?‘z“involving static lattice relaxation and Par-
lations using the full Ewald sum.

dence onR;, and with a greatly reduced magnitude. This
oscillatory behavior arises from long-range charge ordering,
as seen, for example, in the charge—charge correlation
function® It is interesting to note the slightly different fre-
guencies of the charge oscillations in the melt and in the
high-temperature crystal, suggesting qualitatively different

charge-ordering effects in the two systefns.

In summary, the above results demonstrate that, even for
highly disordered systems, the problems in evaluating the
total energy in Eq(3.4) by directr ~! lattice summation with
spherical truncation arise from the net charge in the system
for some arbitrary value dR.. Moreover, the oscillations in
the total (non-neutralizedenergy of a spherically truncated
system at finite temperature appear to be a physical effect e
associated with charge ordering in the real system.

Finally, we consider two simple types of interfacial sys-
tems, namely, free surfaces and grain bounda(@Bs).

ry’s modification of the 3D Ewald suff that permits con-
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Compared to the two, more or less homOQe_neousw disOfk|G. 9. Direct comparison of the surface-charge neutralization energies of
deredbulk systems considered above, interfacial systems areigs. 7a) and 1b).

Downloaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



8262 J. Chem. Phys., Vol. 110, No. 17, 1 May 1999 Wolf et al.

6 [T in Fig. 10b) show only the interface energy.

i (100) free surface, MgO : L. . .
charge-neutralized  1/r The somewhat disappointing result in Figs.(d0and

4l - 10(b) is that the excess energy oscillates dramatically about
r . 1 surface energy [¢¢/4°] | the correct value obtained by means of Parry’s formula
o L1y ) nt }\ * ] (dashed horizontal lingin fact, in both cases we are unable
- Coly s ’ \" Iy T 1 to determine even the correct sign of the Coulombic contri-
o IR Y’ N S . NG ‘] bution to the interface energy. This numerical, second-order
Y 0 & | X .h ‘ | & R . . .
4 \ f\./ Tﬂ 1 \ 1] effect arises from the fact that the underlying uncertainties in
® y ‘1 o V] the Madelung energies per ion in the system are of roughly
-2 Parry = | the same magnitude as the excess energy per ion in the in-

terface. In Sec. V A we will show how the effects of damp-
ing imposed on the Coulomb pair potential enable realistic
simulations of interfacial systems by direct lattice summa-

energy / ion [qz/a ]

P S T D S B T tion.
1 1.5 2 25 3 35 4
(a) R, [a]
C. Shifted Coulomb pair potential
° : | | (210) | sm.ex| | ] For the charge-neutralized Coulomb potential to be us-
6 F o bicrystal . able, for example, in lattice-statics or molecular-dynamics
[ o A 9 ° ° ] simulations, the relevant expressions for the forces and
o 4 a o N stresses must be derived from KE8.6). Moreover, a method
=~ oL o ) ot Oé ? b 4 for shifting the potential and its derivatives has to be devel-
= AR O & T TN R oped so as to avoid any discontinuities in the energy, forces,
3 0 iR R 5 - = and stresses at the surface of the truncation sphere.
@ nooa ey Sy el e . X
2 O AT I S L] Prior to tackling these problems, however, we develop a
O I RO more formal theoretical understanding of the charge-
s _, —_‘.‘; 5 v v 5 ‘.|<,5_- neutralization term in Eq$3.5) and(3.6). As is readily seen,
[o Parry & W the latter can be rewritten as follows:
-6 _
L charge-neutralized 1/r j N N ..
_8'....r....1..”|...,|...»|<.H' E?oe'[Ut'(Rc) %E q|(Rc)_;2 Z ql:lijy (37)
1 15 2 25 3 35 4 - R. =1 (riljjec) c
{b) R, [a]

because the net charge within the spherical truncation shell
FIG. 10. Interface energf.e., Gibbsian excess energy per unit arfea (a) of any ioni is given by
the (100 free surface an¢b) the (210) symmetric tilt boundary in MgQ@in
units of g%/a®). To demonstrate the subtraction of two large humbers nec-

essary to obtain these excess energiet)ithe total Madelung energy per A -(R )= E ) (3 8)
ion (in units ofg?/a) in the system containing the surfageuaresand the Qile) = = g;- ’
perfect-crystal reference systegrossesare shown also. The dashed hori- (rij<Ry)

zontal line indicates the interface energy obtained via Parry’s slab version of

the Ewald sum(Ref. 23. We note that the term for=i needs to be included here so
that the true total charge in the spherically truncated volume
is obtained; the latter obviously includes the ion at the center

sideration of a slab geometry. For our present purpose, the@f the truncation sphere. Inserting E@.7) into (3.6), we

relaxed zero-temperature structures were determined bgbtain

means of the potentials of Sangster and Stonéhamd a

point-ion model in which the Coulomb energy, forces, andEt; (Re)=E(Re) — Ef (Rc)

stresses were evaluated using Parry’s slab me’tﬁhﬂ;mg 1 N 1 N N

these as input structures, the charge-neutralized Coulomb en- ~Z D 99 _ - 2 2 9i9 (3.9

ergies were subsequently evaluated using (Bd). 2 j o 2i= =

To demonstrate the subtraction of two large, rather simi- <

lar sets of energies to determine the interface energy, in thgr more explicitly,

free-surface results in Fig. (@ we have included two dis-

tinct sets of data: first, the total Madelung energy per(ian 1 N N

units of g?/a) in the system containing the surfacuares E{‘{',f‘d( Ry = 52 E Sh(r”) 2 q , (3.10

and the perfect-crystal reference systé&mossey second, =1 (r‘ﬁ'RC) ci=1

the Coulombic contribution to the total Gibbsian excess en-

ergy per unit aredi.e., the interface energyin units of  where we have introduced the “shifted” Coulomb pair po-

g?/a3, obtained from the first set; by contrast, the GB resultgtential,

(r;i <Rg) (rjj
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A slight modification of Eq(3.7) readily permits incor-
poration of these effects. By introducing thg— R limit
into Eq. (3.7), according to

N N
1 ol 1
e im 2> > DAL =32 (312
=R | 211 {7 T 2R =
e (rj<Rg)

and evaluating all derivativegrior to taking the limit, all
effects due to the surface charge are fully incorporated while
rendering the energy in E§3.10 unchanged. The rationale
for leaving the self term out of the limit is that an ion does
not exert a force nor a pressure on itself; this constant term
FIG. 11. An interpretation of Eq$3.10 and(3.11) is that for every charge will thus not contribute to the derivatives of E.12.

q; at distance ;; from some central ioi, an image charge of opposite sign The shifted pair potential in Eq3.11) is hence replaced

is projected onto the truncation sphereRat, such that ioni effectively by
interacts only with neutral pairs.

Vg rij)zﬁ— im (@] (3.13
i =R T
Cry=agqg i_ i . while Eq. (3.10 remains formally unchanged. In analogy to
Vsh(ru) qlqj (r|J<Rc),
rj R Eq. (3.3) we define the Madelung energy of ioras
VE(ri)=0 (r;>R). (3.11)
s | EVR)= 3 VE(ri). (3.14
This interesting result reveals that the physical concept (r_q ik)
ij C

of charge neutralization at the system surface and the opera-
tional concept of shifting of the pair potential are equivalent.The starting equatiori3.10 for evaluating the forces and
As first pointed out by Adam¥. the charge-neutralized en- stresses may then be rewritten as follows:

ergy of the spherically truncated system can therefore be N
written in terms of a shifted pair potential which smoothly 1

approaches zero at=R.. The additive constant in Eg. EgﬂRJ”E; Ei'\Aad(Rc)_z_RCZl a- (3.19
(3.10, which involves a sum over the squares of the charges

in the system, is a self term for each ion that is unaffected byrhe a(=x, y, z) component of the force on ionis defined
the pair interactions between the ions and merely added tm the usual manner by

the total Madelung energy of the system.

N

In view of Egs.(3.10 and (3.11), we propose the fol- F. (R)=— ‘9EiMad:_ J S vE(r)
lowing interpretation of the manner in which the Madelung ted ¢ i, Mgl [7i st
energy can be extracted from the total energy of the spheri- (rij<Re)
cally truncated, charged system. For every chaygat dis- dVgh(fij) o
tancer;; from some central iom, an image charge of oppo- == 2 Tar o (3.19
site sign is projected onto the truncation spher&at such (ri;?Rc) L te

that ioni effectively interacts only with neutral pairfsee

Fig. 11). The image-charge potential; g;g;/R., is then  With [see Eq(3.13]

added to the unshifted Coulomb potentiglg; /ri; , so as to \C

achieve charge neutralization in the energy and all its deriva- dVeH(ri) . (i_ i) (3.17)
tives; this results in a smooth truncation of the pair potential dr; Sl RS '
atR;. As a consequence, the interactions of the central ion ,

with the ions aR. (which are responsible for the net charge E9- (3-16 can be written as follows:

in the systerhand with the entire material beyoir} vanish,

thus effectively delineating a neutral, spherical environment  F;,(R;)= E fijas (3.18
for each ion from which its Madelung energy can be ex- (ri!i'Rc)
tracted. :

As written, the neutralizing potential in Eq®.7), (3.9,  where
and(3.10 is a constant for any given value Bf . Formally,
the ions on the surface of the truncation sphere would there- fia=0iQ| = 25— =5 (3.19
fore have no effect whatsoever on the forces and stresses on " " rij rj R¢ Re =R
the ion at the center, a result that is unphysical. Clearly, the e
surface ions exert #positive or negative pressure on the is the pair force on iom due to its interaction with iof, and
system and give rise to forces, effects that must be taken intQ; ,=r;,— i,
account. For a pair potential, the virial stress tensor is giveR’by

1 rija 1 rija
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1 N
Re) = o Fiafiigs 3.2
O'a,B( c) 6Vi=21 ]2# ijalijp (3.20

(rij<Ro)

whereV=N() is the system volume anfl is the average
volume per ion. Combining Eq$3.19 and (3.20, we thus

obtain
1 N
R R
aﬁ( C) 6V|Zl ]E#I qlqj
(rij<Rc)

1 rijalijp 1 Tijalijg

X| — — (3.2)
T R: R |

rij=Re

The manner in which the truncation term in both theconducting sphere is preciselyq, i.e.,

forces[Eq. (3.19] and stressd€q. (3.21)] is actually evalu-

Wolf et al.

D. Discussion

Based on the concept of charge neutralization,(Bd.1)
describes a pair potential that smoothly approaches zero at
the surface of the spherically truncated volume because the
charge within this sphere is compensated by an equal and
opposite surface charge Bt (Fig. 11). Interestingly, this is
very similar to the classic problem of determining the poten-
tial at the center of a conducting, grounded sphere due to the
presence of a point chargg,at some point =r fi within the
sphere(i.e., r <R.); heref is the radial unit vectot! Since
the sphere is conducting and grounded, the electrostatic po-
tential on its surface must be zero, i®.(R;) =0. This con-
dition can be guaranteed by placing a fictitious image charge,
g’'=—qR./r, outside the sphere al’z(Rﬁ/r)ﬁ. A little
analysi¢’ then shows that the net induced charge on the
it exactly compen-
sates for the charge inside the sphere, and it is distributed on

ated aR, is illustrated in Fig. 11. For example, in the case of the conducting shell in a region centered around the point at
the stresses, for eadk-j pair the angular term associated R:A. The potential at the origin is then simply the sum of the

with the truncation term, r(la I,B/Rc)r —Ry is identical to

the angular termr”ar”ﬁ/r”, assomated with the corre-
sponding unshifted—| interaction. This can be interprete
as having added an image chargeq;, at R which com-
pensates the chargg atr;; such that ion effectively inter-

acts only with neutral pairs. The image-charge potential
—0;q;/Rc, is then added to the unshifted Coulomb poten-
tial, g;q;/r;;, so as to achieve charge neutralization in the

energy and all its derivatives.

For acubiccrystal at zero temperature, H§.21) can be
simplified since, for every crystal shell with radiug con-
tainingn(r) ions, one can write

n(rg) 1
D Tijalijp=Oupm T2, (3.22
= jalij 3

where é,,4 is the Kronecker delta. Insertlng Eq8.22 and

(3.14) into Eq. (3.21) and substituting foNsh, after minor
manipulation we obtain

s 1
Tup(R)= 500 3 ; v§h<r.,>—6(f§EMad<Rc>. (3.23
(rjj<Re)

Consequently, in units of @)1, the pressure is identical

contributions due to the real charge and its image. If there are
a number of charges within the spherical shell, the potential

g at the origin can be simply calculated by linear superposition

over the contributions from the charges and their respective
images. Thus, in analogy with the charge-neutralization
method, the conducting shell also neutralizes the charges that
lie within it.

This image-charge method is related to Friedman’s
reaction-field methad in which the charges within a spheri-
cal shell of radiugk; are embedded in a dielectric medium of
dielectric constante. In the reaction-field method the image
of the chargeq at r=rh is placedoutsidethe truncation
sphere atr’=(R§/r)ﬁ and assigned a chargg’ = —(e
—1)/(e+1)qR./r. In spite of these similarities, the two
methods differ qualitatively in three key aspects. First, the
physics of the reaction-field and the charge-neutralization
methods are different. In the reaction-field method, the im-
age charges describe the response of the embedding dielec-
tric medium (i.e., beyondR,); in the charge-neutralization
method the charges placed on the surface compensate the
excess charge withiR,. Second, fore—oo the explicitr
dependence i’ leads to a functional form for the force
different from that in Eq(3.19, although it also goes to zero
at R.. Third, for finite e the force on an ion aR; together
with that on its image is finite, whereas beyoRd the po-
tential, and hence the force, is by definition zero; for firite

to one third of the Madelung energy of the perfect-crystalthe reaction-field method does therefore not provide a suit-

ions, with an identical convergence behavior.
It is interesting to note that the first derivative\6§(r i)

able basis for a dynamical computational scheme.
The properties of the Coulomb pair potential in Eq.

in Eq. (3.17), and hence the associated forces and stresses {8.13 suggest a general truncation procedure applicable to
Egs. (3.19 and (3.21), are smoothly shifted to zero at the all types of pair potentials. That is, by defining a shifted

cutoff radius, as is the pair potential in E(8.19 itself.

potential, Vg(ri;), in terms of the unshifted potential,

Naturally, all higher derivatives will therefore be truncated inV(r;;), by
the same manner. An interesting feature of this type of trun-

cation (by anr;;j-independent, constant shif that it does

not alter the shape of the original, unshifted pair potential nor
the functional forms of its derivatives. Specifically in the

Coulomb case, this implies that the ("*1) functional form

Ve(rij) =V(rij) — lim {V(r;;)}, (3.29

rinRc

of thenth derivative of the original Coulomb pair potential is one assures not only that &; all derivatives ofVg{r;;)

unaffected by the truncation.

approach zero smoothly but also that the functional form of
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the unshifted potential and all its derivatives are preserved. R.
In that sense, the truncation method based on(Eg4) is as Et°‘(RC)/N=4wq2f0 drrQ(r). 4.3
unintrusive as one might imagine.

In molecular-dynamics simulations, a system whoseThe radial charge distribution function can be represented by
forces are derived from Ed3.24 should, at least in prin- its Fourier transform &8
ciple, not conserve energy because the energy does not rep- 1
resent quite the correct integral of the forces; when integrat- _ - _11ei
ing, for example, a “shifted-force” potentidf, a term QN=27 Jo dki Q) ~L]sin(rk), “9
proportional tor;; appears in the energy. Although the en-
ergy and its derivatives are therefore not entirely consistent/
with one another, our shifting method has the advantage th 4
the actual values for the energy, forces, etc. thus obtained are 4o (=
as close as desirable to the correct ones, i.e., to those ob- Q(k)=1+ Tf drrQ(r)sin(rk). (4.9
tained for the unshifted pair potentid@he exact solution As 0

illustrated in Sec. VII, however, in practice energy is con-Combining Eqs(4.3) and (4.4), we obtain
served rather well, permitting the use of the same integration

’ : 2 R, (=
time step as in the full Ewald method. EYR,)/N = ;qu drf dKKQ(k) — 1]sin(rk): (4.6
0 0

ith the spherically averaged charge structure factor given

IV. CONVERGENCE ANALYSIS integration over yields

According to Fig. 5, thé&r, dependent Madelung energy 2 "
extracted from the spherically truncated, charge-neutralized E"YY(R_)/N= _q2f dk[Q(k)—1]
environments of the ionfsee Fig. 2c) | differs systemati- m 0
cally from that obtained from the molecular approddisee 2 -
Fig. 2@]. The likely cause for these differences is that ——qzj dk[Q(k)—1]cogkR.). (4.7
spherical truncation breaks up the molecules rear thus ™ 0
destroying the ~° interaction of an ion with a neutral, mo- This expression reveals that the energy of the charged
Iegular ghell[see Eq.2.4)]. As also noted above, the osc?l- system consist of two terms, @, independent term gov-
lations in the Madelung energy extracted from sphericalneq solely by the charge distribution in the system and an
truncation are of a different nature than the more or Ies§c dependent term. The actul, variation of the second
rgndom, much shorter-period _fluctuations in the charge deNyrm can only be established assuming a specific form of
sity of the systentsee, e.g., Figs. 5 and.6Also, as clearly (k). For example, for a completely uncorrelated system,
seen in Fig. 8, the oscillations in the Madelung energy aboub(k)zly i.e.. the second term vanishes. On the other hand,

its fully converged value are weakly damped, with an ampli-¢o 5 perfect crystal lattic@(k) consists of a descrete set of
tude roughly decreasing proportional t&R1/ In the follow-  qejta functions[see Eq.(4.22 below]; the second term is
ing We.WI|| elucidate the origin qf th|s pehawor py using an ipen simply a sum of nonconvergent oscillatory terms, a
analysis based on the charge distribution funct@(x). finding that is consistent with our numerical results for the
A. Formal analysis perfect NaCl crystal shown in the doubly logarithmic plot in

In ioni | I Fig. 12 (open symbols

n lonic systems two structural measures are equally Use- = tpe fact that in a perfect crystal lattice the oscillations

ful, the r_adi.al Qistributio_n functionﬁ(r_), a.n(.j the radial do not die out means th&°(R.)/N does not converge. In-
charge distribution functionQ(r). For simplicity, here we oo in 4 Jittle known paper EmersleBemproved half a
!|m|t ourselves to a binary system, with charggs-=q. It century ago that in three dimensions the spherically trun-
is well known that for such a system cated NaCl lattice sum does not converge. However, Bor-
G(r)=G,,(rn)+G__(r)+2G, _(r), (4.) wein et al3® showed more recently that, by contrast, in a
two-dimensional (2D) square lattice spherical truncation
QN =GC,+(N+G-_(N-2G,_(r), (4.2 converges and that the lack of convergence in the 3D NaCl
where theG,4(r) (,B8=+,—) are partial radial distribu- lattice is intimately connected with the nature of the spheri-
tion functions for the different combinations of the two spe-cal truncation; they also showed thaibic truncation con-
cies. Throughout, we use the normalization thatifess,  verges in both two and three dimensidfigthis greater ro-
G(r) approaches the average number density of the systerhustness of cubic truncation in the NaCl lattice is probably
the dimensions of bothG(r) and Q(r) are therefore due to the fact that the crystallographic unit cell and, hence,
1/volume. With this definition ofQ(r), the average charge any system thus generated, is always charge neutral.
between distanceasandr +dr from the center of some ioin Next we consider the convergence behavior of the
is given byq;4mr2Q(r)dr. charge-neutralizedtystem. To determine the average Made-
We first consider the convergence behavior of thelung energy per ioff [see Eq(3.6)],
chargedsystem([see, e.g., Fig. @)]. With the above defini- N
tion of Q(r), the average Coulomb energy per ion may be EMadR )/N=EP{(R,)/N— %2 —inq‘(RC) (4.8

written as follows[see also Eq(3.4)]: tot i=1 R. ’
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1003 Mad 2 o[
3 charged Eot (Re)/N= ;q fo dk[Q(k)—1]
P H
o 104 ] P Bt 2 (= sin(kR,)
© EIE - __c 2
T ?n!n. p o Tchq fo dkQ(k) T (4.11
- charged
E i new:a”zed Similar to Eq.(4.7), the energy of the charge-neutralized
o ] ¢ system therefore consist of two terms as well, Ryninde-
Lol RN pendent ternfidentical to the first term in Eq4.7)] and a
i I second term, however with a modifi€y dependence. Due
1 _ f to the 1R, prefactor, this term is responsible for the conver-
0.01 : gence of the energy of the charge-neutralized system. In fact,
3 10 even without any charge orderihge., Q(k)=1], this term
R, [al converges monotonically asR{. Incorporation of charge

FIG. 12. Comparison of the spherically truncated, charged and chalrge(—)rde”ngl can be expected to speed this convergence signifi-

neutralized Coulomb energies for the NaCl structure at zero temperaturé@ntly since the charges tend to screen their potential and
(see also Fig. ¥ Open symbols: Log-log plot of the absolute value, |eave the net charge within the truncation sphere as neutral as

Mad H . . .
\E“"(EC)*ES? (Rc—>°°)\/(;\‘,h0f ]Ehlflf d'ﬁefencedbetwgeln the total energy of possible, a fact borne out by all our simulations of the crystal
the chargedsystem and the fully converged Madelung energ{f2d(«) and the mel(see Fig. 8

=-3.495 116 a [see Eq.(4.13]. Closed symbols: Same plot for the . . .
charge-neutralizecenergy, |EYa{(R.) — EMaY(R_—»o)|/N [see Eq.(4.14)]. The R¢-independent constant in Eqet.7) and (4.11) is

The solid line, with a slope of 1, represents R, . readily seen to be identical to the fully converged Madelung
energy per ion,Et'\Qf‘d(RC—wo)/N. Inserting Eq.(4.5 for
Q(k) and evaluating the integral ovér the constant term

- becomes
we need to calculate the average charge within the cutoff

sphere. With the above definition @(r), this charge is 5 "
given by EMYR,—%)/N= ;qu dkQ(k)—1]
0

Re
Aqi(Rc)zqi+47-rqif0 drr2Q(r), 4.9 :4Wq2f drrQ(r). (.12
0

where qg; accounts for the central charge not included in ) ) ) o )
Eq. (4.4), integrating by parts over, dividing by R,, and 0 E®(Re—)/N which, by definition, represents the average

using the fact that the integral of sidx from zero to infinity Madelung energy per iorEf(R.—)/N, given by the

is equal tom/2, we obtain conditionally convergent infinite sum in E¢L.1). That the
energies of both the charged and the charge-neutralized sys-

2R.q; [~ tems oscillate about the same Madelung energy is consistent
Agi(Re)=——— f dk Q(k) —1]cogkR;) with all the simulation results presented in Sec($ée Figs.
0 4, 5, and 7-10 Our principal results, Eq$4.7) and(4.11),
20; (= sin(kR;) may therefore be summarized as follows:
+7j0 de(k)T (4.10

2

2q9° (=
tot, _ =Mad L —
According to this result, in a perfect crystal lattiggith EP(Re)/N=Ey (Re—)/N T fo di[Q(l) 1]

Q(k) given by Eq.(4.22] the R, dependence ahq;(R,) is

dominated by the first term, revealing that the amplitude of X cogkRy), (4.13
the oscillations inAQ;(R.) increasedinearly with R.. The

charge-neutralizing energyAq;(R.)/R., then becomes EMAYR,)/IN=EMR,—o)/N

equal and opposite to the undamped, oscillatory term in the ) )

energy of the spherically truncatezhargedNacCl lattice[see _2q fxde(k) sin(kR;) 4.14
also Eq.(4.7)]. For a perfect crystal lattice the charge neu- 7R Jo k '

tralization in Eq.(4.8) therefore completely eliminates the

undamped oscillations. This damping effect is clearly visible In summary, by contrast with the nonconvergent energy

in Fig. 12 (closed symbols showing that the solid line with  of the charged system in E(¢.13), the Madelung energy of

a slope of—1 [see Eq(4.23 below] represents an envelope the charge-neutralized system in F4.14 converges at least

for the damped oscillations IFEMAYR,) — EMa9(o0)]. as 1R.. The factor of 1k under the integral in Eq4.14
Finally, insertion of Eqs(4.10 and (4.7) into Eq. (4.9 has the effect of reducing the contributions from the latge

yields the following general expression for the energy of thevectors such that the lowektvectors for whichQ(k) has a

charge-neutralized system: significant value dominate.
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B. Discussion i.e., Q(K) is the Fourier transform of the two-point, charge—
Fharge correlation functiong(r)o(r'), normalized by the

. 2. - . .
the spherically truncated, charge-neutralized system in E .“mt.’er of ions and”; its sphe_rlcal average Is the,refgre the
(4.14 with the Rc—z convergence of the molecular system ourier transform of the spherical averagesdf)o(r’), i.e.,
considered in Sec. I B. According to E(.5), this requires (o) (r'))jr—r=(QUr=r"))r—r=Q(r=r’) [see Eq.
determination of the interaction energy of each ion with all* "~ . ' :
the ions outside the cutoff sphere. Using the condition of _Fﬁr a p:cerfect”ckrystal tlatt'CEQ(k) C:ef;';]ed n Eq.(4.18)t_
charge neutrality, it can be shown that this energy is equa\fanls es for a vectors - excep ose representing

: : : i I-space vectors associated witharged lattice
and opposite to the damped, oscillatory term in Egl4), reciproca i ; N ]
ie., Eq. (2.5 yields AEM¥(R)~1R,. The charge- planes (hkl), for which there is constructive interference;

therefore |o(kp)|=NY? and henceQ(kny)=N. For ex-
mple, in the rocksalt structure, the charged lattice planes are

It is interesting to compare the convergence behavior o

neutralized potential in Eq4.14) therefore converges less
fast than that for the molecular system, a difference arisin . . L :
from the different manners in whi)éh the central ion in Figs. hose.for which all three Miller indices are odd. The first
2(a) and Zc) is surrounded. This comparison demonstrate?eak mQ(k) therefore appears f11q =2m/d(111) corre-
how the approximate nature of E@.2), placing the charge- sponding to the 'm.ost ywdely spacgdargedplanes in this
neutralizing ions on the truncation sphere rather than at theﬁtructure. Fora f|n|te-5|z_ed, periodically repeated NaCl crys-
correct crystallographic positions, affects the convergence.tal we may therefore write

For a numerical comparison of Eqgt.13 and (4.14) odd
with our simulation resultsQ(k) has to be determined ex- Q(k)=N 2 Ok~ 1 (4.19
plicitly for any given structure. In principleQ(k) can be (hkD)
obtained from Eq(4.5), i.e., by integrating ove®Q(r) asso- whereék,kth is the Kronecker delta. For an infinite system
ciated with the system. Unfortunately, for crystalline systemgN— o), the Kronecker function is replaced by the properly

this approach is not straightforward becauserfere, Q(r)  normalized three-dimensional Dirac delta function,
does not approach zero due to the presence of long-range

X . dd
order. Instead, we use the relationgfip .

Q(k)=p(2w)3(h2kl) S(k—Kp), (4.20

Q(K)=(Q(K))= f|k|=deQ(k)/47Tk2' (4.15 wherep is the atomic density. Inserting E¢4.20 into Eq.
(4.15, we finally obtain the desired angular average of
where the angular brackets indicate an angular average ove{K):

a spheres, at constanik|=k. As a consequence of this odd
definition, for any functiorf (k), Qk)=p(2m)3D (8(k—Kni) )i
(hkl)
477[ dksz(k)Q(k):fd3kf(k)Q(k). (4.16 29 5k~ knial)
=p(2m)3 > ——7—. (4.2
(hkl) 4’7Tk

The charge structure factd®(k), in Eq.(4.15 is defined as . . . . .
the square of the Fourier transform of the charge densit))ggu:;t:ﬁgu:lzﬁb;u;;";::g%Czaés)gtséngg‘;;pri’:'g:‘reizgﬁg be
, i.e.,Q(k) = o (k) o* (k). By definition,a(k) is gi b . ) . o )
o(r), .8, Q(k) = (k)o™ (k). By definition,a(k) is given by longing to a giver{hkl} family, and substituting = 8/a> for
1 . the NaCl lattice Q(k) can be finally written as
o(k)=—1,7f dra(r)exgi(k-r)]
aN 1672 & S(k—[Knil)

LN QU="gz= 2 Mz (4.22
=—p cexdi(k-r)], 4.1
quzgl aj exitiry)] 419 This expression enables us to explicitly determine the

oscillatory Madelung energy for the perfect NaCl crystal as a

whereo(r)=2q;5(r—r;) is the charge densitjto be dis-  fynction of R, . Inserting Eq.(4.22 into Eq. (4.14), we ob-
tinguished from the atomic density(r)=%;8(r—r;)]. The  t5in

normalization factor, YN~ 2, was introduced here in order

i i initi i 3272
for Q(k) to be consistent with the definition 6(k) given EMad(R J/N= EM3(R_ o) /N— 7Tq3
by Eq.(4.5). The charge structure fact@(k) then becomes tot tot R.a
[noting that, sincer(r) is real,c* (k)=o(—k)] odd
hkl .
— X =3 SIN(|Kni|Re) - 4.2
Q(k)—o’(k)ﬂ'*(k) {hzkl} |khk||3 r(| hkll c) ( 3)
=o(k)o(—=k) Because of thékp, | 3 term, the leading contribution to the
1 {hkl} sum arises from thgl11} planes that represent the most
= Ff f d3rd3 o(r)o(rexdik-(r—r")], widely spaced charged planes in the rocksalt structure. With
q M,;;=8, and |kyq|=2m/d(111)=27v3/a, Eq. (4.23

(4.18 yields
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-2.5 increasingR.. For the melt the effect of charge neutraliza-
] I NaCl lattice tion [which gives rise to the R; prefactor in Eq.(4.14)] is

M therefore merely to speed up the convergence in the Made-
lung energy.

Based on Eq(4.14 we can also, at least qualitatively,
understand the lack of convergence of the surface and GB
energies in Figs. 1@) and 1@b). We start with the definition
of the interface energyy, as the Gibbsian excess energy per
unit area,A,

analytic, {111}

nmax

1
=& 2 [En™(Re)—E(Ro)],

Madelung Energy [q%a]

(4.29

B e e L E A R e whereEM{(R,) is the charge-neutralized energy of all the
N, ions located in a given plane near the(hkl) interface
c plane while Egﬂcad(Rc) is the corresponding perfect-crystal

reference energy. The sum includes all lattice planes within
FIG. 13. Comparison of the Madelung energiE%ald(Rc)/N, for the NaCl ay P

lattice obtained analytically from the approximate expressib24) with
those determined directly via spherically truncated &immation with
charge neutralizatiopsee Fig. 5 and Eq3.3)].

EntR)/IN~EYE(R,)/N
2

323
=Eprd(Re—)/N— —ZF?sin(zm/ERc/a).
C

O

the distanceR. from the interface, i.e.ng.,=R./d(hkI),
whered(hkl) is the interplanar spacing.
According to Eq.(4.14), E,’Y'ad(RC) is given by

ENAYR.)/N,=EN*(R.—)/N,

29° (= sin(kR;)
R. fo den(k)Ty

ko

(4.2

where, in analogy to Eq4.5), Q,(k) is defined as the Fou-
rier transform of the radial charge distribution function,

(4.29
Qn(r), averaged over thi, ions in planen. Both E,’Y'ad(Rc)

cnergios obtainbd via spherical frantation of the NG riieand e perfect-crystal energies in £4.25 therefore con-
. N . erge in the same oscillatory manner, and have an amplitude
with charge neutralizatiofisee Fig. 5 and Eq(3.3)] are, verge ! ! y v Pt

indeed, reasonably well approximated by {4&1) contribu- that decreases asRl/. However, because the total number

tion alone given by Eq(4.24. The differences between Of. terms in Eq.(4.?5}, nmax:.RC/(.j(hl.d)’ increaseslinearly
EMad(R )/N and the numerical data in Fig. 13 arise from theWlth R., the effective damping iny is greatly reduced. In
h'llrlmer1cl< | contrib t'l:)ns IWe ha el elr%‘:ed thallt clusion fact if one were to assume that the energy differences in Eq.
inlgE (4*‘5'3) of th(la #vle densest cr\mlar Vedl : anes inl th: I\IlaCI(4'25) are entirely independent of, the oscillations in the
latti 9. [(1'11) (311), (331), (333 and (9511)5)r resents th resulting expression foy would become entirely undamped.
attice | ' ' ' a epresents e That this assumption is actually not too unreasonable is seen
numerical data much better.

) .. from our simulation results in Figs. (& and 1@b) that re-
In the high-temperature perfect crystal the Contrlbut'onveal an approximately constant amplitude of the oscillations
from the lowesk value,| k14, in Eq.(4.23 can be expected .

. . n y.
to dominate even more than in the zero-temperature structure Y

because the peaks @(k) are damped by the Debye—Waller

factor, Q(k) = Q(k, T=0)exp(~kXu?)/3), where(u?) is the |, errECTS OF DAMPING THE PAIR POTENTIAL

average vibrational amplitude of the ions about their perfect-

crystal equilibrium lattice site€ As a consequence, the os- In Sec. IV the theoretical foundations were developed

cillations in the high-temperature data are much smoothebased on which the true Madelung poterifialf the ions can

and of smaller amplitude than the zero-temperature resultse extracted simply by neutralizing the total energy of a

(see Fig. 8, although the R. damping is the same in the spherically truncated, charged system. Unfortunately, how-

two cases. ever, due to its rather slow, R/ oscillatory decay the poten-
By contrast with either the zero or the high-temperaturetial thus obtained suffers from practical limitations; more-

crystal, for the melt the oscillations not only in the Madelungover, in some cases, particularly in the determination of

energy in Eq.(4.14 but even in the energy of the charged interfacial excess energies, the oscillations are practically un-

system given by Eq(4.13 decay with increasin@R. [see  damped, rendering the method virtually useless for practical

also Fig. Tb)]. This behavior originates from the fact that, applications. Clearly, the numerical accuracy of the method

because the melt lacks long-range order,Q{k) does not needs to be improved to make it computationally more ro-

exhibit the crystalline delta-function peaks. Instead, the keyust.

feature inQ(K) is a broad maximum at ke~ |k, associated At this juncture, we have essentially two choices. One

with the short-range order in the melt; also, for largearal-
ues, Q(k)— 13! The Fourier transform of(k)—1 in Eq.

option would be to improve the model for deriving the
Madelung potential from theactual charge distribution

(4.13 is therefore localized in real space, i.e., it decays withwithin the spherically truncated volume. For example, one
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might think of compensating not only for the net charge near

N o0
1 g;q; erfd ar;;)
the surface of the spherically truncated system but also for EC=>> > -

L r
the higher moments in the charge distribution by subtracting s !

the relevant expressions from the total energy. This approach 1Nz 0;q; erf(ar;;)

is qualitatively similar to the fast-multipole methods devel- 5;1 ]; 1 T (5.

oped in recent years for the simulation of Coulombic

system$-1° However, the main advantage of the above ap- where « is a damping parameter determining how fast the
proach, namely, the conceptual and computational simplicit omplemgntgry error function falls off fr'om orft Fij = 0)
associated with the assumefunction distribution of the gtgion\évr'th increasing;; . Our goal now is to subdivide the
net charge in the system on the system surface, would b 9y

lost. In our view, giving up this simplicity in favor of having EC=E3+EY. (5.2

to consider the actual excess-charge distribution within the ., thatEtot represents the dominant contr|but|on associ-
truncation sphere would be a conceptual step backwards bgzaq with the damped Coulomb pair potential wiilg' is a
cause it would refocus the computational problem on thgorrection term that can be made arbitrarily small. Unfortu-
details of how in each case the ions are surrounded for thgately, the breakdown &' in Eq. (5.1) does not satisfy this
purpose of extracting their true Madelung energy. We willcondition as the second term becomes very large for large
therefore not pursue this option here. values ofa.

Our second option, conceptually less ambitious but op- A remedy to the problem is to simply add and subtract
erationally extremely useful, is to damp the Coulopdir  the self term(for i =) associated with the second contribu-
potential in Eq.(3.13 directly so as to more quickly flatten tion in Eq.(5.1),
out the oscillations with increasirg. in the resulting Made- N N
lung energy in Eqs(3.6) and(4.14). Our analysis in Sec. IV lim | Z 2 (5.9
has demonstrated that the effect of neutralizing the surface "i—0'" '~ -
charge in the spherically truncated system is equivalent t@n the right-hand side of Eq5.1), and subsequently to de-
symmetrically dampinghe R.-dependent Madelung energy fine E'%| andE!% as follows:

q? erf( ar”)}

ij

(1) (2)

of each ion. These results offer hope that damping the un- o erfolar, ) N
derlying pair potential in Eq(3.13 directly may be equally ET) E D M_ %2 @ (5.4
successful in that damping will not only significantly reduce 214 i T i=l
the value ofR, required to achieve satisfactory numerical N

L . . 1 q;q; erf(ar;)
precision in actual simulations but also render the value of EE%‘) —E Z - (5.5
the fully converged Madelung energy essentially unchanged 23145 ij
from its undamped value fdR.—o. While preserving the In the following we will assert, both numerically and

conceptual and practical simplicity of spherical truncationanalytically, that for a range of vaIuesEi%t) thus defined,
with surface-charge neutralization, the challenge with thisndeed, represents a small correctiongd,. Also, in Sec.
approach is to establish the theoretical foundations that pei|I we will demonstrate thatEE%t is identical to the
mit the systematic errors introduced by damping the paireciprocal-space energy in the Ewald sum; the latter can
potential to be assessed for any particular damping functiortherefore be viewed as the systematic error introduced when
In the following we demonstrate that the Ewald method profeplacing the bare Coulomb pair potential by the damped

vides a theoretical framework for exactly this type of ap-°Nne- Our discussion follows closely the formal development
in Secs. llI B and Il C, the only differences arising from the

roach.
P replacement of the bare potential by the damped pair poten-
A. Damped, charge-neutralized Coulomb pair tial.
potential In practice,E (3 can only be evaluated for a finite cutoff
function? in the following we only consider damping via N

H H tot _1 qu erfc(ar”) 2

the complementary error function. Because of its close ConE(D(RC)_EZl ; R Fggl gi. (5.6
nection with the Ewald method and the ease by which the = (r.f<ch> ' =

necessary mathematical manipulations can be performe
this choice will enable us to establish the mathematical cor
respondence between spherically truncated summation

and the Ewald method and shed some light on its physical Em“(R)~E(3(Re) —Ef"(R.), (5.7

interpretation. _ o . where, by analogy with Eq3.5), the energy associated with

Ewald sum for the infinite system, we start by multiplying N
the total energy of the system in Ed..1) by unity [erfc(x) EneU R )Nl 3 qiAgi(Re)erf( aR;)
tot C .

+erf(x)=1], i.e., 2= R.

? n analogy to Sec. IlI B, the charge-neutralizea “true”
Madelung potential then becomes

(5.9

Downloaded 26 Feb 2011 to 130.101.140.126. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



8270 J. Chem. Phys., Vol. 110, No. 17, 1 May 1999 Wolf et al.
Following the development in Sec. Il C, this expression may -2.5 e e e eee) 0,25
"\ NaCl lattice ]
formally be replaced by o charge-neutralized 1/ :
N N
. 1 fop erfc( a’l'--) — . damped(a=0.8) . 0.2
ER(R) ~ fim | %, 3 AHEEA s -8 " -
fi—R| 21=1 17 ij = AT i ]
e (rij<R¢) = [ \“ i I g / 5 R e
SRR ! B 41015 §
N 5 L by g odl el 2
erfC( aRc) 2 - .35 M L_‘-“- ag— /# “‘rgf‘o-—gu ”Idf Iy
2R 2 qi 1 (59) ~ i ' g \“I D\ | f_‘,nﬂ'_" om
C i=1 > ! /'/ \ ! q, q:‘/ |:|/ 0.1 ~
2 LT 84 5
where the additive constant is a self term for each[see 2 g/ A
also Eq.(3.12]. The Madelung energy in E¢5.7) may then ¢ -4 ‘// v ‘ﬁ’ undamped 4 0.05
be written as follows: - AN ’
1 N - erfc(ar)\\\
_45 L bt NI S B Aoy Lt boe 0
Ebi(R)~52 2 V§'(rij)—Eeer, (5.10
=1 J#i 1 1.5 2 25 3 35 4
(rij<Re¢)
. . . (@ R [al
where the shifted Coulomb pair potential from E§.13 ¢
was replaced by the “shifte(or charge-neutralizedewald -3.05 - S
potential,” i molten MgO
a9 eI‘fC(aI’ ) a9 erfc(ar;) i charge-neutralized 1/r
VErW(rij): 'Jrf”_ lim ["r—”] (5.11) -3.1 o
ij "ij*Rc ij ,;, | b
By analogy with the self term in Eq$3.10 and(3.15), the % -3.15 T” ‘\ ‘(’:Z)Pgd R
additive constant in Eq5.10), - N ]
erfdaR ) N N 2 . [-TI ‘\ ):!':\D l «
= — 2 820 L ey Yo G e R s
self ( 2Rc + F]i) le ql 1 (512 § \((.F C\:d:( E
5 ;
. . . - b d
is a self term for each ion that is merely added to the total & .3.25 Yy
Madelung energy of the system. Inserting these definitions, undamped
Eqg. (5.10 may be rewritten more explicitly as follows: i
N
EMeq R )%12 > qg;q; erfa( arjj) 1 15 2 25 3 385 4
T T T R (b) R [a]

(rij<Rg)

[CIin erfc(arij)])

rij

FIG. 14. Comparison of the charge-neutralized damped and undamped
Madelung energies fof@) the zero-temperature perfect crystal gbg the

MgO melt for@=0.8/a [see also Figs. 6 and)]. In (a) the rapid approach

to zero of the underlying damping function, ed€() is also illustrated
(right axig. The dashed horizontal lines indicate the correct Ewald values.

— lim
rij—Re
erfo aR;)
2R,

(5.13

N
o
2
+_F7712>2 qi-
=1

The interpretation of these expressions is the same gwoaches its correct, fully converged Ewald value very rap-
that for the undamped potenti@ee Sec. Il ¢ namely, Egs. idly (dashed horizontal lineand, forR.=2a, is practically
(5.10—(5.13 describe how, for the damped Coulomb pair converged. The rapid approach to zero of the underlying
potential, the Madelung energy can be extracted from thelamping function, erfefr), which is responsible for this be-
total energy of the spherically truncated, charged sy$sm®  havior, is shown in Fig. 14) (right axis.
also Figs. Pa) and Zc)]. As in Sec. Il C, these expressions The particularly dramatic benefits of damping in the case
reveal that the physical concept of charge neutralization abf the interfacial systems are illustrated in Figs(a515(c)
the system surface is equivalent to the operational concept dbr the case of the fre€l00 surface. By contrast with the
shifting the pair potential. In Sec. V C, the relevant exprespractically undamped oscillations in the excess energies in
sions for the forces and stresses associated with(&j0 Fig. 10(@), the damped energies in Fig. (&b converge rap-
will be derived; these will then provide the basis for theidly to their correct values obtained from Parry’s slab
molecular-dynamics simulations discussed in Sec. VII. versiorf® of the Ewald sum(dashed horizontal lings Re-

Figures 14a) and 14b) demonstrate the dramatic im- markably, when increasing the value af from 0.8a to
provements due to dampirigqg. (5.13] in the approach of 1.5/, the effective range of the potential decreases from
the Madelung energies of the perfect NaCl crystal and th&k.~2.6a to about 1.8, with virtually no effect on the value
MgO melt towards their correct values indicated by theof the fully converged energy.
dashed horizontal lines. For the valueswf 0.8/a chosen for The equally dramatic effects on the surface streffees
these illustrations, in both cases the Madelung energy apmal expressions for the stresses and forces are given in Sec.
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2 T T T T V C) are illustrated in Fig. 1), which shows the Gibbsian
T (100) free surface, MgO 1 excess stresses per unit area parégdetomponentand per-

3 ,‘ damped - pendicular(zz component to the surface. We note that the
or 150 | charge-neutralized 1/r ] Coulomb stresses shown here are balanced by the stresses
-~ i associated with the short-range repulsive part of the poten-
Z 1 tial. This is the reason why tltezcomponent of the Coulomb
3 stress does not vanish, in spite of the fact thatttital zz
E stress vanishes in the fully relaxed surface. By contrast, the
® 05 xx andyy components of the total surface stress are usually
§ finite, indicating that the surface would prefer to have a lat-
£ tice parameter that is differefisually shorterthan that of
o 0 the bulk crystal.

Finally, shown in Fig. 1&) are two types of Coulomb
0.5 ol forces per ion, the force on each individual ion in the outer-
1 15 2 25 3 35 4 most plane gnd the total excess force per@icm, integrated
() R, [a] over the entire surface region and normalized to the number
of ions in the outermost plaineAgain, since the surface is
O N S L L relaxed, thetotal force on each ion vanishes although the
E (100) free surface, MgO ] Coulomb forces are finite and balanced by the short-range
o~ 3 - 0=15 - forces. The remarkable result in Figs.(hband 1%c) is that
f s ,.._,,YN, : og 0 oS : both the stresses and forces settle down very rapidly to their
T 2rF ° . 000 27 stress 1 correct values obtained from the Parry formtiayith ap-
® i g’\ o o o\ ] proximately the sam®&, range as the energy in Fig. &.
§ 1 E Parry DOOD 0=0.8 _‘
(] 2 i
o 0L ol o o o n‘( 7] B. Relationship with real-space Ewald energy
g E . DE o XX stress 4 - ] ]
T 4" o™ -Xuﬂ-;;ﬂr—gﬂ%mmmmaj__! To facilitate the comparison of Eq5.13 with the
* - o=15 ] Ewald method, it is useful to rewrite the starting expression
S f" damped 3 for the Ewald sum, Eq(1.2), in a manner analogous to Eq.

i charge-neutralized  1/r 1 (5.4), by simply adding and subtracting on the right-hand

cgbe e L L] side of Eq.(1.2) the self term(for n=0 andi =) associated

’ 15 2 25 3 85 4 with the erf@r) term[see also Eq(5.3)],

b R [a N 9P erf(a|nL N
0 prr T T T T T T T T InL|—0 =1 |nL| R
o
— ‘%“\-—,og"%og 800000 6000-00 00 CED XD ADD The real- and reciprocal-space contributions to the Ewald
e 0.5 1 o\ w15 total B sum in Eq.(1.5) may then be written as follows:
g E s : Etotziﬁ % =, g erfo(er;+nL|)
c : /  amped ] T2 S0 Irii+nL|
S .45l charge-neutralized 1/r J
~ o 4
® 2 ] @ 2
$ .27, 5 o : - —m2, 4 (5.15
S 4 i\ 'I-\E)iu SV outermost jons ] T i=1
g-25F . o & 18 & & qigerf(alri+nL
g E |‘| ; o - EtotZEZ Z 2 quJ |r‘('+|n||]_| |)’ (5.16}
@ -3p 0/ (100) free surface, Mgo0 '=hi=1n=0 .
Fod 1 where the prime has been omitted in E§.16, indicating
-8.5 e e that the self term is now included. By subdividing the Ewald

1 15 2 25 3 3.5 4 sum in this unconventional manner, similar to the breakdown

© R, [a] of the total energy in Eq95.2), (5.4), and (5.5 we assure

FIG. 15. Effect of damping on the Coulomb contribution to the energy,that in practicdz}(m represents a small correction to the real-

forces, and stresses of the Md@00) free-surface at zero temperatuta) tot ; i
Surface energy forr=0.8/& and 1.54 (in units of g%/a%); for comparison, space termE,”. As demonstrated below, this greatly facili

see the undamped surface energy in Figaltab) related surface stresses tate€s the comparison between the Ewald diigs. (1.5),
per unit area parallelxx componentand perpendiculafzz component to (5.15, and(5.16] and the damped, direct'* sum.

the surfacdin units of g%/a®); (c) force per ion in the outermost plane and An obvious difference between E(p.13 and the real-
total excess force per iofie., _mteg.rated over the entire s.u_rface. reglcz)n and space Ewald energy in ECﬁ.lS is that the latter implies the
normalized to the number of ions in the outermost plane; in unitgk?). e _ .
The dashed horizontal lines if8)—(c) indicate the correct Parry values SYStém to be periodic. This can sometimes be an advantage

(Ref. 25. because one can then apply the so-called minimum-image
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- g T magnitude of the oscillations and therefore speeds the con-
X 7 charged vergence towards the correct Madelung endagshed hori-
2.5 - " zontal ling, the net effect being a reduction in the effective
// | NaCl lattice range of the potential.
NE .3 ;_v, / Vg damped 1/r(0=0.8)
= 1
_g -3.5 C. Forces and stresses
; Similar to Sec. IlIC, to facilitate the evaluation of the
g -4 forces and stresses, our starting equat®d0 is rewritten
= as follows[see also Eq(3.15]:
-4.5 | LN
; Bl (R)~5 2, E"™(Re)~Ecer (5.17
1 1.5 2 25 3 35 4
(a) R [a] where, by analogy with Eq3.14), the Madelung energy of
° ion i was defined by
-2.8 [ T T T T
E molten Mgo ] EiMad( R.)= 2 VSEAN(I‘”). (5.18
29 F damped 1/r (0=0.8) ] IEa
i 1 (rjj<Re)
— il
2 .3 B We note that
T [ charged
[ /
c r ] derfC(a’rij) 2a 2
_E 3.1 :i T, =—F/§exp(—a2rij); (5.19
3 .34 X - —
8 T F e e - the derivative of\/SEr‘]’V(rij) [see Eq(5.11)] therefore becomes
& Pl d 1
-8.8 I , ] dVgy(ri;) erfo(ar;)) . 2a exp(—a’rf)
[ charge-neutralized drij =—0;q; I'izj m ™
-3.4 b e by vy b e b b b a
1 15 2 25 3 35 4 erffdaR,) 2a exp—a’R?)
0 w5 |- 620
(b) R, [a] RS T R.

FIG. 16. Effect of charge neutralizatigior shifting on the damped ~*
potential fora=0.8/a. (a) Zero-temperature perfect crystél) MgO melt.
The dashed horizontal lines indicate the Ewald values.

The force on ion may then be written as follow{see also
Egs.(3.16 and(3.18]:
EMad
|

Fia(Re)=—
truncation method. By contrast with spherical truncation, in
this method every ion is surrounded by the same, full content

of the simulation cell. Since the latter is usually neutral, the = 2

iy

stEer(rii) riﬂ_

E fija! (52])

benefit of minimum-image truncation is that every ion is thus (r”!j'Rc) dri; Fij (r”qlec)

automatically embedded in a neutral environment for the

purpose of computing its Coulomb energy. Unfortunately,where

however, when the simulation cell is rather large or when its

shape deviates considerably from a cube, the method is not erfaari;))  2a eXF(—azl’iZj)

very practical. fija= 12# Ay |~z a2
The most important difference between the real-space (rij<Rg) ! J

expressions given by Eq&.13 and (5.15 is that, by con-
trast with the damped, direet ! sum in Eq.(5.13, the
real-space Ewald expression in E§.15 is unshifted(i.e.,
non-neutralizey with a discontinuity of the potential and its
derivatives atrjj=R;; Eq. (5.19 therefore represents the
R.—< limit of Eq. (5.13. The effect of shifting on the real-
space Ewald potentidl.e., of converting Eq(5.15 into Eq.
(5.13] is demonstrated in Figs. (@ and 1&b) for the per- is the pair force on ion due to its interaction with ion.
fect crystal and the melt, again far=0.8/a. As expected, in  Analogous to Eq(3.21), the virial stress tensor defined in
both cases charge neutralization dramatically reduces thqg. (3.20 then becomes

Mo erfc(aRc)+ 2a exp(— a’R?)
Fij R 12 Re
lija

rij=Re

R

(5.22
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1 N effdar;) 2a If we assume 3D periodicity in Eq(6.1), i.e., n
0,5(Re)= WZ > qiqj| T]Jr sz =(ny, ny, n,), thek=0 andk#0 terms in Eq.(6.2) may be
=1 (,il!j'Rc) ] written as follows:
N 2
eX[i—afzrﬁ) rij I’”B erfdaRC) 26( = 277
oliig Ek=0_T7 Tl 6.3
% rij Fij R T 3V Zlql | ©9
><exp(—aZRﬁ)) Fijol ij gl 529 and
Re Re ‘rij:Rc kr0) 27NG? < exp( —k?/4a?)
Ek*0= > > Q(k), (6.4
V o k

Because of the exponentials in this expression, a simple
relationship between the energy and pressured@iiccrys-  \hare V is the simulation-cell volume an@(k) is the
tals similar to Eq.(3.23 does not exist fow>0. The con- charge structure factor defined in H¢.18).
vergence behaviors of the pressure and the energy are there- ., op periodic slab geometry, i.@=(n,, n,), these

y 1Ry X y il

fore not quite identical although, in practice, the effecte (o5 become considerably more comgieMost important,

range of the charge-neutralized pressure is found to be tfﬁy contrast with Eqs(6.3) and (6.4) the double sum involv-
same as that of the energy. ing i andj can no longer be reduced to the square of a single

sum?® Also, because of the 2D periodicity within the slab
plane, with unit-cell ared, the in-plane component of; ,
VI. ANALYSIS OF THE ERROR TERM Pi;=1{Xij » ¥ij}» has to be distinguished from its out-of-plane

componentz;; . Following Parry?® thek=0 andk#0 terms
As already mentioned, a critical problem with the opera-in Eq. (6.2) may then be written as follows:

tional approach of damping is the illumination of the magni-

tude and physical nature of the systematic error introduced k=0_ T N %
when replacing the bame ! pair potential by a damped one. TOAE “ aiq;
We recall that the purpose of the particular breakdown of -
EC'=E+ES in Egs.(5.2), (5.4), and (5.5 was to capture exp(— a“(z;j|9)

ORRSF) , , % y . _
the largest by far contribution ;" in E{3) while ensuring arir  tlalerfalzih 6.9
that the systematic erroh Eyf*=E(3), is small for all prac- and

Mad

tical purposes. Starting from E¢p.5), our analysis oA E
will closely follow the Ewald method. Apart from making a a N *  exdi(k-Di:
formal connection with this method, this will enable us to ~ E®*0=_—> 99, >, exlitep)]
) . . ) . 2A =1 k#0 K
illuminate the physics underlying the reciprocal-space term
in the Ewald sum. X[F(Jk,zii)+F(k, =z )], (6.6
A. Formal relationship

where

To enable Fourier transformation of the expression for K
Eg) in Eq. (5.5), periodicity has to be imposed on the sys- F(k.i|Zij|)=exp(iklzij|)erfc(—iaIZijl). (6.7
tem. At this point we need not specify whether this period- 2a
icity applies to all three dimensions, as in the conventional  gecause of the explicit;; dependence, the double sums
Ewald method, or to only two dimensions while allowing for i Eqs. (6.5) and (6.6) cannot be reduced to a single sum.
finite thickness in the third dimensidn.In full analogy to Apart from the greater mathematical complexity of these
the error-function term in E(1.2), the expression deE%t) is terms by comparison with Eq$6.3) and (6.4), the fact that
therefore rewritten as follows: these double sums have to be explicitly evaluated makes

N N molecular-dynamics simulations of interfacial systems using
AEMad— Ezgt)zlz > a0 erf(e|ry +nL|) (6.1)  Parry’s methof prohibitively expensive.
2{=1 =100 [rij+nL| Equations(6.1)—(6.7) provide the theoretical framework

As discussed above, the self tefifior i=j and n=0; see needed for assessing the nature and magnitude of the system-

Egs. (5.20 and (5.14] is included in this expression; this atic error, AEyi%(a), introduced when replacing the bare

term is needed if one wishes to take the Fourier transform ofoulomb potential by the damped one. By definition, in the
Eq. (6.2). absence of damping.e., for «=0) the error term vanishes
We note that Eq(6.1) is identical to the starting expres- identically; in practice, however, there seems to be no way to
sion (5.16 for the reciprocal-space Ewald term. Following av0|d_a finite value ofx b(_acayse, W'thOUt some degree of
the Ewald method, Eq(6.1) is therefore Fourier trans- damping, the energy oscillations in the real-space energy,
formed. The reciprocal-space term in the Ewald sum thu§ ). fall off too slowly, and hence require a rather long
obtained may be written in the well-known manner as fol-truncation radius. As in the Ewald method, the challenge is

lows: therefore to identify the optimum compromise between the
Mad__ tot _ tot_ e(k=0) 1 (k=0) practical benefits of damping and the systematic errors thus
AEy =E=E =E""7+E"7. (6.2 inevitably introduced.
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FIG. 17. « dependence of the Madelung energy per ion of the zero- + ] I
temperature perfect crystéh units of g/a). —_ - molten MgO .
L] f‘ﬂ charge-neutralized 1/r 1
o -1.02 .
E r |“\
. . I
B. Simulation results c (o8 ]
k] i
A practical approach towards assessing the importance ~ ~ -1.04 i ‘\ 7
of the error term in any given case is to determine the fully o H \: 0=1.5
4 08
converged real-space Madelung energy, forces, and stresses § 1064 oot . ]
for various values ok; any change in the fully converged g R .g":'gg::gmw o
value with increasingr then signals the importance of in- . roF ",E: \“ﬂ“” 1
cluding the error term. For example, according to Fig. 17 the ® q08L :4;\ 0=1.2 -
fully converged Madelung energy of the perfect NaCl crystal ® i et T
is practically independent af all the way up too=1.5/a, as L o=08 ]
is the pressurénot shown, indicating that the error term is e L L L
insignificant for this range ofr values. This remarkable re- 115 2 25 3 35 4
sult demonstrates that, far= 1.5/, a cutoff radius ofR. (b) R, [a]

=1.5a is sufficient to accurately determine the Madelung
ConStint’ the r,egszon pemg.that the remprogal-space term ion and(b) the pressure per ion. Both are given in energy unitg%8; to
only ~2.0x10"°q“/a in this case(for details see Sec. convert the pressur@which is an energydensity into units of g%/a®, the

VIC1). data have to be divided byM3 whereV=a®8 is the atomic volumésee
The average energy and pressure per ion in molten Mg®lso Eq.(5.23].

are shown in Figs. 18 and 18b) for four values ofa

ranging between 0.8/and 1.54 (please note the highly ex-

panded energy scale in comparison with Fig).1&s dis- ot ) )
cussed in Sec. Il B, the melt was prepared by molecularEx N Ed. (6.2). According to Eq.(6.3), thek=0 damping
dynamics simulation using Buckingham-type interionic correction vanishes unless the simulation cell has a net di-
potentiald' and a point-ion model in which the Coulomb pc()llgo)moment. In many situations, a finite magnitude of
energy, forces, and stresses were evaluated using the full 3B~ arises from a finite-size effect introduced when 3D
Ewald method. Two distinct effects of damping are clearlyPeriodicity is imposed on an aperiodic system so as to enable
visible in Fig. 18. While increased damping significantly re- the Fourier transformation. For example, an infinitely ex-
duces the effective range of both the energy and preSSLHtgnded ionic melt will not, at any instant, exhibit a net dipole
(from R.~2.4a for a=0.8A to R,~1.4a for a=1.5R), the moment, by contrast with a finite-sized, periodically ex-
systematic errors thus introduced increase in a highly nonlintended system. Including the=0 term, and the related
ear fashion; interestingly, the errors in the energy and presf_orces and stresses, in the S|ml_JIat|on would then give rise t_o
sure are of comparable magnitude but have opposite signﬁ?e creation of a long-ranged dipole moment due to the arti-

(For an analysis of this behavior, see Sec. VI)C2. ficially imposed periodicity; this in turn would systematically
alter the dynamics of the infinite system and hence exacer-

bate this finite-size effect. In many cases w0 term is
therefore dropped from E@6.2), thus more realistically rep-

In an attempt to better understand the magnitude andesenting the behavior of the infinite system. In all our simu-
underlying physics of the error term at least for a 3D periodiclations we have therefore omitted this term as well. For a 3D
system, we now analyze the=0 andk+0 contributions to  periodic system, Eq6.2) therefore simplifies as follows:

'|:§G' 18. Effect of damping in molten MgO d@) the Madelung energy per

C. Discussion
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AER=E=E**0. (6.9 Ekisg /N = 3292
The finitek term in Eqgs.(6.2) and (6.8) has a rather 3ma
different physical origin than th&=0 term. According to  For example, fora=1.0/ and 1.54 this expression yields
Eq. (6.4), the term can be written as|la-weighted sum over values of 4.% 10712 and 2.0 10 g% a, respectively, i.e.,
the peaks in the charge structure fac@(k), defined in Eq.  the term is negligiblgsee also Fig. 17 The same analysis
(4.18. Since, by definition,Q(k) =|o(k)|>>0, it follows  can be applied to any perfect-crystal structure, leading to the
that E®*9>0, i.e., in agreement with our simulatiofsee,  conclusion that fore<1.5/ the error term is totally negli-
e.g., Fig. 180)], the error term is alwaypositive This can  gible and for largera values the term increases approxi-
be understood in terms of the definition®f), (=E**?) in  mately exponentially as a function of 2 [see Eq(6.10].
Eq.(5.5: The self ternifor i =j in Eqg.(5.95)] is always large
and positive whereas all remaining terms are either positive, r¢acts of thermal disorder: High-temperature
or negative, their net effect being relatively small, iBl3,  crystal and melt
>0.

To illustrate the physical meaning &**9, we con-

exp(— 372 a?a?). (6.10

The effect of thermal disorder in a perfect crystal is
sider a crystalline system for whid@(k) consists of a dis- readily estimated. As a simple model we consider a crystal

crete set of Bragg peaks. As already discussed in Sec. IV B’Yith randomly displaced ions; = O, wherer_io indicates

the first peak inQ(k) appears afk,|~2m/d(hkl) and is perfect-crystal lattice §|tes and thea_re small d|§placement

associated with the most widely spacetiarged lattice yectors (ui|<a)_ relative to these sites. Insertion of these

planes,(hkl); all other Bragg peaks involve smaller spacingsInto Eq.(4.18 yields

between charged lattice planes, and hence lakgesctors.

By contrast with thesé vectors, thek sum in Eq.(6.4) Q(k):qz—N

involves reciprocal-lattice vectors associated with sirau-

lation cell, with its smallest values being of the order of As discussed earlier, provided is small enough we

27/L g, wherel g (B=X,Y,2) is the linear dimension of the need only evaluat€(k) for small k vectors where Eqg.

simulation cell in thes direction. (6.11) simplifies as follows:
Clearly, the magnitude df ; has nothing to do with the 1 | N

physma_l I.ength sca!e of thmaterial The esgentlal physics Q(K)~ —— E qj(1+ik-ui)exp(ik-ri°)

of the finitek term is therefore contained in the structural a'N|i=2

characteristics of the material as capturedifk). The role

of the prefactor ofQ(k) in Eq. (6.4) is therefore merely to

weight this structure irQ(k) in terms of an arbitrary length

scale associated with the simulation cell. By assigning a par,

tlcularly_large weight to the Iowesk-s'(tlzlig)tu_ral featu_res, I8 structure factor vanishes for smakl vectors (K< Ko

those with the longest wavelengilts,™™™ is a particularly =|kq14). Assuming uncorrelated, random displacements of

sensitive function of structural features with a length scale OEhe ions(i.e., ignoring any effects of phonanghe average

thf? S|tmula_t|_on-cfell S'Ztﬁ' Astl.rf]_ theh:o_term, a(;wy sy;tgm;sae of the dot product is simply given biu;u;)=(u?) ;. Equa-
effects arising from the artificially imposed periodicity are i, s 1) then becomes

therefore enhanced.
Q(k)=((k-u;)?) = 3k*(u?), (6.13

1. Zero-temperature perfect crystal where the factor of 1/3 comes from the directional averaging.

To establish a reference basis, we first analyze the errdequation(6.4) then yields
term for the perfect rocksalt crystal at zero temperature, with o o
charges*g. Given that thg111} planes are the most widely Ek#0) ~ Nq2<u2)2 exp(—k?/4a?). (6.14
spacedcharged planes in this structure, the first peak in 3V k#0
Q(k) appears atkyjj=2m/d(111) (see also Sec. IVB  Replacing the discrete sum by the integral, i.&
Due to the perfect constructive interference for tisector,  _,v//(24)%/d3k and using Eq(4.16), this expression can be

Eqg. (418) y|E|dSQ(k111) =N, whereN is the total number of evaluated approxima‘[e|y to give
ions in the simulation cell. According to E¢5.4), the related

2

. (6.11

N
2, aj expli(k-u)Jexeli(k-r7)]

2

2

1 N
=N | 2 itkwexstik-rD) . (6.12

ere we have used the fact that the perfect-crystal charge

cqntriputio_n to_ the error term from all eight equivalé¢ti.1] E(k#0) iqu<uz>f dk K2 expl — k%/4a?)
directions is given by 3m
27N2g? exp( — |kq14%/4a?) q? (u?)
(k111 = ~ 27 3
E 8 v Kpd? (6.9 0.3aN a a2 (ad)”. (6.195
For sufficiently small values o# this term dominates in To test the validity of this approximate expression, Fig.

E®*9 pecause the remaining peaksQ@tk) are at largek 19 shows the full error term determined directly for a perfect
vectors and hence more severely damped by the exponentillgO crystal with randomly displaced ions for a rangeaof
factor. With d(111)=(v3/3)a and V=Na®8 for the NaCl values; the average magnituda?), of the random displace-
lattice, Eq.(6.9) yields ments was chosen such as to correspont=@500K in the
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FIG. 19. Doubly logarithmic plot of the error terfiq. (6.8)] vs « obtained FIG. 20. Temperature dependence of the error term for molten MgO
from constant-pressure simulations for MgO using the full 3D Ewald sum.(squaresand the perfect crystdtircles for «=1.0/a. The solid lines rep-

In agreement with E(6.15 (solid line), the data calculated directly for the resent linear fits to the data.

randomly disordered crystabith (u?) corresponding to the actual crystal at

T=2500 K; closed circlesexhibit a slope of 3.0. Also shown are the results

for the actual crystal aF=2500 K (in which the effects of phonons are fully 2 kT
incorporategl the supercooled melt at=2500 K, and the melt quenched to (k#0) N — 3 q” Ks

X ) . - E IN=0.38C(aa) , (6.17)
T=0 K with subsequent relaxation of the ion positions and the pressure. a B

i.e., the error term for a crystal at finite temperature should

increase approximately linearly witff. The molecular-
actual crystal determined by molecular-dynamics simulationglynamics simulation results in Fig. 20, obtained for a value
using the full Ewald sum. According to Fig. 19, the agree-of a=1.0/a, demonstrate that this is, indeed, true not only
ment between these directly calculated valugdosed for the crystal(circles but also for the melfsquares The

circles and the approximate results obtained from &ql5 lower density of the melt compared to the crystal results in a
for the same value ofu?) is excellent(solid line, with a  smaller bulk modulus; this is the reason for the higher slope

slope of 3.0. Therefore, the approximate expressiénl5, in the linear fit to the data for the melt.
indeed, represents the smalkexpansion of the error term for In contrast to the crystal, the melt exhibits two types of
a randomly disordered perfect crystal. structural disorder, which we refer to as “thermal disorder”

Contrary to the assumption underlying E@6.13 and  and “coordination disorder.” First, as in the crystal, the ions
(6.14), in reality the ion movements are correlated due to thén the melt perform thermal vibrations with a magnitude
phonons. To analyze the effects of these correlations on thgimilar to that in the crystal. Second, the melt is further dis-
error term, we performed constant-pressure molecularordered, as evidenced by the presence of coordination de-
dynamics simulations for the perfect MgO crystal atfects. These are responsible for the fact that, even upon
T=2500K using the full 3D Ewald surtsquares in Fig. 19  elimination of the thermal disordefe.g., by quenching to
According to Fig. 19, these correlations reduce the error ternf =0 K with subsequent relaxation of the forces and the
by nearly an order of magnitude relative to the uncorrelatedressurg the error term for the melt has a finite value at
case(closed circles Interestingly, however, the® increase T=0K (see Fig. 20
in E*9 is practically unaffected by these correlations, sug- ~ The contribution toE®*® from the coordination disor-
gesting that Eq(6.15 remains approximately correct if we der can be assumed to be roughly independent of tempera-
replace(u?) by ~0.1{u?). One reason for the dramatic re- ture and given by its value &=0 K. The strong, nearly
duction in E*O due to phonons is that most phonon tenfold increase iE**® in Fig. 20 with increasing tempera-
branches are electrically inactive, i.e., they do not contributdure, from~0.5x 10 *q%a at T=0K to ~4.8x 10 *q?%/a
to Q(Kk). at T=3000K, is therefore almost entirely due to the thermal

It is well known that for crystalline systems the value of disorder. At elevated temperatur&**® for the melt is
(u?) is approximately proportional to the temperature andtherefore dominated by thiteermaldisorder. For this reason,
inversely proportional to the bulk modullB, i.e., it is not surprising that both the high-temperature crystal and
the melt are equally well described by the approximate ex-
pressiong6.15 and (6.17) (see Figs. 19 and 20

2
u . . D 4
QkaBT/B, (6.16 Particularly interesting is the increase B¥*® propor-
a tional to &, which arises from the fact that in the smll-
limit,
wherekg is the Boltzmann constant ar@lis a proportional- Q(k)~DK?, 6.18

ity factor. (This expression is readily derived within a har-
monic approximation in which the ions are connected to theavhereD is a constant. This quadratic form is a general fea-
perfect-crystal lattice by harmonic springs and all ions vi-ture of any equilibrium ionic systermexcept the zero-
brate independently of each othelnserting Eq.(6.16) into  temperature perfect crystal, which represents a special.case
Eq. (6.19 yields Equation (6.18 follows from the fact that, by definition,
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Q(k) is a symmetric function ok, i.e., Q(k)=Q(—k) [see reduced. For example, up te=1.2/a about 80% of the er-

Egs. (4.19 and (4.18], and that charge neutrality requires 'S in Figs. 183 and 18b) can thus be eliminated; for
that Q(k=0)=0. larger o values the smalk expansions in Eqs6.23 and

To determine the related enerdst<*®, we replace the (6.24 become gradually less valid.
sum in Eq.(6.4) by the integral and use E.16) to write

o) Ng? , exp — k%/4a?) 3. Effect of structural correlations
E = a2 d°k k2 Q(k) A comparison of the error term for a chemically disor-
dered, structurally unrelaxed and relaxed perfect crystal at

Ng’D | T=0K is helpful for understanding why the contribution

Ng? o o 2
B 7f dkexp(—k“/4a%)Q(k)~ P due to coordination disorder in the melt is much smaller than
6.19 that due to thermal disorder. To generate a chemically disor-
dered perfect crystal, the positive and negative nearest-
where the last equality follows from insertion of E§.18,  neighbor charges on the NaCl lattice were randomly ex-
recognizing that this relation is valid only for sufficiently changed. The initial, unrelaxed structure then yields the
small values ofa (see also Sec. VIQ1 relatively large value fors EM3%=E®*O of about 0.0§%a
Also starting from Eq(6.4), the pressure associated with (for o=1.0/); by contrast, in the fully relaxed system the
E®*9 can be evaluated following a similar procedure. Usingerror term of~0.2x 10~ is over two orders of magnitude

the well-known trick of rescaling the ionic positions by  smaller and of similar magnitude as that of the melt
=V*3s (wheres represents “reduced,” volume-independent quenched to zero temperature.

coordinate} this pressure can be written as follows: This comparison suggests that thermal disorder is ca-

GEK#0 (1) pable of generating higher-energy structural states that affect
(k#0) - _ _—  ~ "7 P Fni

p N the relatedQ(k) in a manner similar to the structural effects

present in a not fully relaxed system. By localizing the co-

2aNG? & exp( —k%/4a?) ordination disorder, the effect of the relaxation of the ions is
=3V kE() (1—k?/2a?) TQ(k). to greatly reduce long-range structural effects present in the

+

unrelaxedQ(k) while generating a physically realistic struc-
(6.20 ture. Given the great sensitivity of the error term to such
psually artificial and/or unphysical long-range effects, it is
not surprising that its value drops dramatically upon relax-
ation. The reduction in the value &**9 in Fig. 19 by an

Then, following the same procedure as in the derivation o
Eq. (6.19, the smalle expression fop**? becomes

(k#0)_ 4pg°D 3 6.21) order of magnitude when replacing the random displace-
s e ' ments of the ions in the randomly disordered perfect crystal

by the actual, highly correlated displacements in the high-
temperature crystal represents another example of this simple
grinciple. This principle is related to the simple notion of
screening as given by the Poisson equation and the Boltz-
mann factor, i.e., charges obeying Poisson’s equation tend to
arrange in such a way as to screen their own Coulomb po-

wherep=N/V is the number density.

This result shows thgp®“*9~ a2, i.e., like the system-
atic error in the real-space energy, the related error in th
pressure can be made arbitrarily small by simply making
small. Remarkably, however, in the smallimit p<*? is
always negativefor an equilibrium ionic(solid or liquid) tential
system; consistent with Fig. U8, this result indicates that '

. . . ) In summary, the magnitude &**? depends strongly
damping of the real-space pair potential results in the loss of . .

L2 on the degree dbng-rangestructural disorder in the system,
cohesion in the system.

For equilibrium ionic liquids, the constanD in Eqgs. particularly on whether or not the simulated system is in

. . structural equilibrium and on long-range structural correla-
g%gg)n:j(?ﬁ%?ng;‘? ct(;re1 d?t\i/gllqu:(t:igrgisr:ggt;rﬁhiﬂlllnger—Lovett tions associated with phonons. Due to structural features

spanning the entire length of the simulation cell, an unre-
kgT laxed, highly disordered system may thus exhibit features in
" 4mpg? (6.22 Q(k) well below |Kinl; however, relaxation usually has the

) ] ) effect of localizing any structural disorder, and hence elimi-
where \ is the Debye screening length. Insertion of EQ.pating or greatly reducing these artificial, smillstructural

)\2

(6.22 into Egs.(6.19 and (6.2 yields features. Also, the effect of thermal disorder is to establish,
vzo NksT via the phonons, medium- and long-range structural features
E**0~ 2pm ar, (6.23 appearing in the smalk| regime inQ(k), which hence con-
tribute to the error term.
kgT
p<k¢0)% — maa. (6.24)

4. Range of the Madelung potential in liquids and

In the simulation of liquids, by simply adding these ana-S°/ds

lytic expressions to the energy and presdiigs.(5.17) and As for the molecular system and the undamped, charge-
(5.23], the systematic errors due to damping can be greatlyeutralized system, we now investigate the effective range of
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the Madelung potential obtained for the damped, shifted’ABLE I. Combinations of the damping parametes, and truncation ra-
Coulomb pair potentiaﬂsee Eqs(5.7) and (5'13)]_ Accord- dius, R, , for the charge-neutralized, damped Coulomb sum used in our

. . . . molecular-dynamics simulations of MgO. The value Rf for a given

!ng to Eg.(2.5), th,'S rqulres determ',natlon of the energy of choice ofa was chosen such that the pressure in the zero-temperature per-
interaction of the ions with the material beyoRd. Because fect crystal is practically converged. For comparison, the parameters used
of the damping in Eq(5.13, this energy falls off exponen- for the spherically truncated, fully converged 3D Ewald sum are also listed.
tially with increasingR. ; its value for a given value dR; is For the MgO_interionic potentials of Sangster and StonefRef. 21), the
controlled by erfcg¢R,) [see Eq.(5.13]. The exponentially Ewald sum gives a zero-temperature lattice parametegef4.2271 A.

shortrange of the Madelung potential thus obtained is based

e ; *(ag") R:(a0)
solely on the contribution t&/.4(r) in Eq. (2.5 from the
real-spaceMadelung energy in E(5.7); it ignores possible Dampedf:i 1.0 2.71
long-rangeeffects that might arise from theciprocal-space Bgmggg:*l 1; i:gg
term and hence control the actual range of the potential. Full Ewald 25 15

According to Eq.(6.8), the reciprocal-space energy rep-
resents the systematic err@g,=E“*?, introduced by the
damping; this energy has to be incorporated iWtg(r) in
order to obtain the effective range of the total Madelungdipoles. As discussed in Sec. VICR(K) then vanishes
energy from Eq.(2.5. Equation (6.8), connecting the identically betweerk=0 and the first crystalline peak, re-
a-dependent reciprocal-space quanty*? with the real- sulting in Eq. (6.9 for E®*9. Substitutinga by 1R,
space quantityE(3,, permits the effective range of the E(=E*"? is readily seen to decrease exponentially with
reciprocal-space Madelung potential to be estimated. BeR.. As a consequenc¥.«(r) [see Eq.2.5)] falls off faster
cause of the error function, the individual contributions,than any inverse power af However, even a small pertur-
qiq; erf(ary)/r;j, to E3) in Eq. (5.5) differ significantly from  bation of the perfect lattice sites generates local dipoles,
zero only whenar;;=1, showing thaE®*® can be inter-  yielding Veg(r)~r .
preted as representing the energy of interaction of some av-
erage ion with all the ions located beyond some cutoff dis-
tance,R.~ 1/a. The «® variation of E&*? described by Eq. VIl MOLECULAR DYNAMICS SIMULATIONS
(6.19 therefore implies thaE 3 ~DR; % this range is con-

- ) i ) The simulations of bulk and interfacial systems reported
siderably longer than that associated with thgponentially

so far in this article involved the full Ewald sum, 3D peri-
short-ranged real—spac_:(se energy. odic, or Parry’s slab versioft, against which the directly
Th% rather shorR; ~ effective range of the Madelung gymmedy ~* Coulomb energy, forces, and stresses could be
energy® of any equilibrium ionic system, which corresponds testeq. In the following we discuss a few molecular-
to Ver(r)~Dr~° [see Eq(2.5)], is striking in that it is exactly  gynamics simulations which, by contrast, directly apply the
the same as that of the Lennard-Jones poteii$gé Sec. apoye method by utilizing the charge-neutralized, damped
I1B). Analysis of the interaction-strength paramet@r,can -1 pair potential in Eq.(5.11) and the related forces and
proviQe insight into the origin of this~® decrease o/ «(r). stresses given by Eqés.20)—(5.23. Since, by virtue of the
Starting from Eq.(6.18, D can be calculated from the ex- charge-neutrality condition, the pair potential and all its de-

pression rivatives are smoothly shifted to zero Bt, these expres-
1 2Q(Kk) sions are well suited to provide the basis for molecular-
=5 a2 (6.29 dynamics simulations. Using the combinations of the

k=0 damping parametery, and truncation radiusk., listed in
Then, combining the definition a®(k) in Egs.(4.15 and  Table I, these simulations can be compared directly with
(4.18 with the charge-neutrality condition, it is straightfor- simulations involving the full Ewald sum.

ward to show thaD represents the following ensemble av- In the following we consider a 3D periodic, perfect MgO

erage: crystal in a cubic simulation cell of size 4§° containing
432 MgO molecules described by the interionic potentials of

DNJ f d3rd3r’ra(r)r’a(r’)=J f d3rd3 ' p(r)p(r’), Sangster and Stoneha&hThe crystal is gradually heated,

under zero external pressure, through the melting transition
(6.26 while the lattice parameter, atomic structure, mean-square
where p(r)=ra(r) is the local dipole moment. Unless the displacements, and internal energy are monitored.
system is polarized, in thermodynamic equilibrium these lo-  In principle, a system described by Eg%.11) and
cal dipoles fluctuate about zero. The dipole—dipole correla{5.21)—(5.23 need not conserve energy because the energy
tion function in Eq.(6.26 therefore describes the coupling does not quite represent the correct integral of the fofees
between fluctuating local dipoles. As is well known, this typealso Sec. Il D. Although the energy and its derivatives are
of coupling has the ~© range of van der Waals interactions therefore not entirely consistent with one another, the shift-
and constitutes the physical justification for the attractiveing method in Eqs(3.24) and(5.11) based on the concept of
part of the Lennard-Jones potential. charge neutralization has the advantage that the actual values
We finally mention that a perfect-crystal lattice repre-for the energy, forces, and pressure thus obtained are as close
sents an exception to the geneRy® behavior since it is as desired to the correct ones, i.e., to those obtained for the
easy to group the ions in such a way as to avoid any localinshifted potential. Therefore, as a critical test of our simu-
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lation method, we carefully investigated the degree to which, 1.25
in microcanonical-ensemble simulations, the condition of en- MO
ergy conservation is satisfied.

As a test of the numerical consistency of the energy and
forces, we performed constant-volume simulations of the
crystal for «=1.5A,, R.=1.46a, (the most strongly
damped, and hence shortest-range case; see Tdbletivo
different time stepsAt=0.43 and 2.15 fsg, is the zero-
temperature lattice parameter. For the shorter time step, at a
mean temperature 6900 K and over a simulation time of
4.3 ps the energy fluctuated about the mean value of
—40.517 eV/molecule by-0.001 eV/molecule; a fluctuation 1.05-
by this amount in the kinetic energy of a molecule translates crystal o
into a fluctuation in the temperature of oriy4 K, which is
perfectly acceptable. For the longer time step, we observed 1
in addition a small upward drift of the energy 6f0.0005
eV/molecule/ps. (@) TIK]

To separate the limitations inherent to the direct-
summation method from those arising from the numerical -36
integration of the equations of motion, we compared the
above results with those obtained for the full Ewald method, 37
for which all departures from exact energy conservation are
entirely due to the numerical integration scheme. The fluc-
tuations in the energy are then only0.000 01 eV/molecule
for the shorter time step while for the longer time step a
small upward drift of 0.0007 eV/molecule/ps is observed.
This comparison indicates that the small drift is due to the
finite time step in the integration scheme and not the direct-
summation method. Thus, although, as anticipated, the en-
ergy fluctuations are considerably larger for the direct-

1.2 —=&— Ewald melt
........ o =10, RC=2'71
= a=1.2, Re=2.0
1159 ---0-- a=15R =146

W5

a(T) / ag

1.14

L]
0 2000 4000 6000

crystal

Energy {eV/molecule]
W
=]
I

—&— Ewald
........ o a=1.0, RC=2'71

summation method than for the full Ewald method, they are -4 ol 0=1.2, Re=2.0

still rather small on an absolute scale. These differences are ---0--- 0=1.5, Re=1.46

entirely irrelevant when the temperature is rescaled during -42 T r

the simulation. 0 2000 4000 6000
Given these results, the longer of the two time steps  (b) T K]

combined with energy rescaling was usedijcheat the per- FIG. 21. Temperature dependence(af the lattice paramete(in units of

fect MgO crystal above_ the m?lting poinky, (estimated at ay) and (b) the internal energy per ion for the four sets of parameters in
~3200 K for our potentigland(ii) cool the melt belowT ;, . Table I.

In Figs. 21a) and 21b) the temperature dependence of the

lattice parametera(T), and internal energy are compared

for the four sets of parameters in Table I. Clearly, the dispressure and energy. This requires adgifig® and E<*9

continuity in both quantities between 3000 and 3500 K isgiven by Eqgs.(6.24 and (6.23 to Egs.(5.23 and (5.17),

due to the melting transition; the superheating of the crystatespectively. For example, the additional cohesion provided

and the supercooling of the melt is due to the fact that théyy p*9 will increase the density of the melt, thus greatly

defect-free perfect crystal contains no nucleation centergeducing the systematic errors in the thermal expansion in

such as dislocations or free surfaces, that could trigger theig. 21(a).

first-order transition between the two phases at the melting To investigate how damping affects other properties of

point>3 the melt, we have also determined the structure and self-
According to Figs. 2(a) and 21b), the four parameter diffusion behavior. As described in Sec. IV A, in ionic sys-

sets give rather similar results, although at the highest temtems two structural measures are equally useful, the radial

peratures the melt clearly exhibits a lower density for thedistribution functionG(r), and the radial charge distribution

largest value otv. Following the discussion in Sec. VIC2, in function, Q(r) [see Eqs(4.1) and (4.2)]. In Fig. 22,G(r)

this regime the error term increases rapidly with increasingandQ(r) at 6000 K obtained for the four sets of simulation

values ofa and with temperaturésee Figs. 19 and 20For  parameters are compared. According to these results, in spite

more accurate simulations in this regime, it would thereforeof the slightly different densitiegsee Fig. 21a)], the differ-

be advisable to apply less dampifige., choose a smaller  ences among the four parameter sets are remarkably small in

valug, with a consequently larger cutoff radius. As a moreboth G(r) and Q(r), suggesting that even for the strongest

efficient alternative, one could simply compensate for thedamping @=1.5/a,) the distribution of the atoms and

systematic errors due to damping made in the real-spadgharges in the melt is reproduced very well. Given E4sl)
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2 applied; alternatively, the systematic errors due to damping
MgO melt can be greatly reduced by incorporating E¢8.23 and
6000K ) . :

(6.249) into the simulation.

In summary, the above results demonstrate that even
relatively strong damping combined with a very short cutoff
radius reproduces the structure and properties of the crystal
and the melt remarkably well. Also, as expected from our
analysis of the error term, by simply reducing the degree of

Q(r), G(r) [arbitrary units]

04
damping combined with an increase in the cutoff radius, the
Ewald Ewald limit can be approached with arbitrary precision.
—_— Wal
2 I 0=1.0, Re=2.71 VIIl. SUMMARY AND CONCLUSIONS
---------- a=1.2, R=2.0 . ) )
In this article we have described an exact method for the
------- 0=1.5, R.=1.46 . . . X
simulation of Coulombic systems by spherically truncated,
2 T ' T ! T pairwise 1¥ summation. At the outset we observed that the
0 0.5 1 1.5 2 2.5 3 ) i
problems encountered when performing a spherically trun-
r [ao] cated pairwiser ! sum in a crystal or liquid are a direct
FIG. 22. G(r) andQ(r) [see Eqs(4.1) and(4.2)] for molten MgO at 6000  CONSequence of the fact. that, wherever one truncates, the
K for the four sets of parameters in Table I. system summed over is practically never neutral. Our

method is based on recent work showing that the Coulomb
potential in an arbitrarily disordered, condensed ionic system
is short ranged. In this work, local charge neutrality is
achieved by viewing an ionic crystal as a molecular system
fconsisting of Bravais lattice sites on which complete mol-
ecules are placed, with the proviso that molecules may not be

and(4.2), we conclude that the underlying partial radial dis-
tribution functions differ by equally little, i.e., the underlying
atomic structure of the melt is a rather insensitive function o
@ andR.. This behavior is consistent with the large body of '\ o up so as to preserve charge neutralify. This
simulations of ionic melts in which it was found that omis- . - . 12
. . . method contains Evjen’s approddis a special case:

sion of the reciprocal-space term in the Ewald sum has prac- ) AL o .

The key achievement in this article is the mapping of a

tically no effect on the structure of the méit. . )
. - . spherically truncated, generally charged local environment of
In the Arrhenius plot in Fig. 23 the mean-square dis- : . . . .
. ) . the ions onto this molecular picture. This mapping demon-
placements of the ions in the melt are plotted against the ; : .
. Strates that any net charge in the local, spherical environ-
reciprocal temperature between 3000 and 6000 K. The acti- . . )
. ) ) ments of the ions arises from the breaking up of molecules
vation energy obtained from least-squares fits to the four data . .
sets increases from 0.96 eV/ion for the full Ewald sum tOsﬂuated near the surface of the truncation sphere of each ion.
1.04 eV for the strongést damping. As for the density of theIn zeroth order, these charges may be thought of as sitting
' . . . ' exactly atthe surface of the truncation sphere. The result is a
melt [Fig. 21(a)], this comparison suggests that for more " . - i
. . ; . . . . simple expression for neutralizing the net charge in the trun-
precise simulations in this regime, less damping should bé_,. . . .
Cation sphere of each ion, thus enabling the extraction of the
Coulomb energy, forces, and stresses from the spherically
truncated environment in a straightforward, physically trans-
375 1= parent manner.
\ ®  Ewald An interesting computational aspect of the method is that
e  a=1.0,R=271 the physical concept of charge neutralization at the system
surface is mathematically equivalent to the operational con-
O 0=12,Rg=20 cept of shifting the pair potential to zero at the cutoff radius.
0  a=1.5R.=146 The charge-neutralized potential of the spherically truncated
system and all its derivatives therefore approach zero
-4.254 smoothly atR.. Spherical truncation with charge neutraliza-
tion also eliminates the net dipole moment in the “molecu-
lar” system. However, in spite of this avoidance of a mac-
roscopic polarization, the neutral local environments of the
ions exhibit fluctuating dipoles which determine the effective
range of the net Coulomb potential.
\ Our convergence analysis revealed that the energy of the
-4.75 T T T N - ! charge-neutralized system approaches the correct Madelung
L5 2 23 3 3 energy in a damped, oscillatory manner, demonstrating that
1/kgT [eV-1] the concepts of charge neutralization and damping are intri-

FIG. 23. Arrhenius plot for the mean-square displacement of the ions in thgately connected. This leads us natura”y to the operatlonal

melt vs reciprocal temperature between 3000 and 6000 K for the four sets PProach of simply damping the Coulomb pair POten.tial S0
parameters. as to flatten out these already damped symmetric oscillations

44

Log(MSD) [arbitrary units]

4.5

MgO melt
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even faster. The practical challenge with this approach is térom the considerably greater mathematical complexity of
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potential and its derivatives converge, it further reduces thépace-charge effects at individual interfaces.
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